2. 대학별고사 문항(문항카드)

1) 자연계열 I

[서울시립대학교 문항정보4]

〈표 VI-4 서울시립대학교 문항정보 4〉

1. 일반 정보

유형	■ 논술고사 □ 면접 및 구술고사 □ 선다형고사		
전형명	2021학년도 수시모집 논술전형		
해당 대학의 계열(과목) / 문항번호	자연계열I		
출제 범위	수학과 교육과정 과목명	확률과 통계	
	핵심개념 및 용어	조건부확률	
예상 소요 시간	25분		

2. 문항 및 제시문

[문제 1] (85점)

동전 5개가 앞면이 2개, 뒷면이 3개가 보이도록 놓여있다. 이 동전 5개 중에서 임의로 하나를 선택하여 뒤집는 시행을 한다. 이 시행을 반복하여 보이는 동전이 모두 같은 면이 되면 멈춘다. 멈출 때까지의 총시행 횟수를 확률변수 X라 하고, X가 4 이하인 사건을 A라 하자. 첫 시행에서 앞면이 보이는 동전을 선택하는 사건을 B라 할 때, P(B|A)를 구하여라.

3. 출제 의도

확률의 덧셈정리와 조건부확률을 이해하고 이를 이용하여, 주어진 사건이 발생할 확률을 계산하는 능력을 평가한다.

4. 출제 근거

가) 적용 교육과정 및 학습내용 성취 기준

적용 교육과정	[확률과 통계] - (2)확률 - ① 확률의 뜻과 활용, ② 조건부확률
문항 및 제시문	학습내용 성취 기준
	[12확통02-03]확률의 덧셈정리를 이해하고, 이를 활용할 수 있다. [12확통02-05]조건부확률의 의미를 이해하고, 이를 구할 수 있다.

나) 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
고등학교 교과서	확률과 통계	권오남 외	㈜교학사	2019	53-56 62-65
	확률과 통계	김원경 외	㈜비상교육	2019	44-47 53-56
	확률과 통계	박교식 외	동아출판(주)	2019	50-55 61-65

5. 문항 해설

확률의 덧셈정리를 적용하여 주어진 사건이 발생할 확률과 주어진 두 사건이 종속관계에 있을 때, 한 사건이 발생하였을 경우에 나머지 한 사건이 발생할 조건부확률을 계산하는 능력을 평가한다.

6. 채점 기준

하위 문항	채점 기준	배점
	덧셈정리를 이용해 사건의 확률을 계산한다.	55
	조건부 확률을 계산한다.	30

7. 예시 답안 혹은 정답

[예시답안]

5개의 동전 중 임의로 하나를 선택하여 뒤집는 시행에서, 앞면이 보이는 동전을 선택하는 사건을 H, 뒷면이 보이는 동전을 선택하는 사건을 T로 나타내자. 이 시행을 반복하여 동전이 모두 같은 면이 되면 멈추기로 할 때, 매 시행에서 어떤 동전이 선택되었는지를 연속된 H와 T로 나타내기로 하자. 사건 A는 다음과 같다.

$$A = \{HH, TTT, HTHH, THHH\}$$

사건 A를 구성하는 각 사건들의 확률은 아래와 같다.

$$P(X=2) = \frac{2}{5} \times \frac{1}{5} = \frac{2}{25}$$

$$P(X=3) = \frac{3}{5} \times \frac{2}{5} \times \frac{1}{5} = \frac{6}{125}$$

$$P(X=4) = \frac{2}{5} \times \frac{4}{5} \times \frac{2}{5} \times \frac{1}{5} + \frac{3}{5} \times \frac{3}{5} \times \frac{2}{5} \times \frac{1}{5} = \frac{34}{625}$$

확률의 덧셈정리에 의해,

$$P(A) = P(X=2) + P(X=3) + P(X=4) = \frac{114}{625}$$

이다. 사건 B는 첫 시행에서 앞면이 보이는 동전을 선택하는 사건이므로,

$$A \cap B = \{HH, HTHH\}$$

이 사건이 발생할 확률은

$$P(A \cap B) = \frac{2}{5} \times \frac{1}{5} + \frac{2}{5} \times \frac{4}{5} \times \frac{2}{5} \times \frac{1}{5} = \frac{66}{625}$$

이다. 따라서

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{11}{19}$$

[서울시립대학교 문항정보5]

〈표 VI-5 서울시립대학교 문항정보 5〉

1. 일반 정보

유형	■ 논술고사 □ 면접 및 구술고사 □ 선다형고사		
전형명	2021학년도 수시모집 논술전형		
해당 대학의 계열(과목) / 문항번호	자연계열I		
출제 범위	수학과 교육과정 과목명	미적분	
	핵심개념 및 용어	삼각함수의 적분	
예상 소요 시간	30분		

2. 문항 및 제시문

[문제 2] (95점)

다음을 모두 만족시키는 다항식 f(x)를 구하여라.

(1)
$$f(0) = 0$$

(2) 상수
$$0 < a < 1$$
에 대하여 $\int_{1-a}^{1+a} \frac{\cos a - \cos 1 \cos x}{\sin^2 x} dx = 2 \sin f(a)$ 이다.

3. 출제 의도

본 문항은 정적분 계산능력과 삼각함수 덧셈정리를 이해하고 구체적인 문제에 적용하는 적용 능력을 평가한다.

4. 출제 근거

가) 적용 교육과정 및 학습내용 성취 기준

적용 교육과정	미적분 - (2) 미분법 - ① 여러 가지 함수의 미분 미적분 - (3) 적분법 - ① 여러 가지 적분법
문항 및 제시문	학습내용 성취 기준
	[12미02-03] 삼각함수의 덧셈정리를 이해한다. [12미적03-03] 여러 가지 함수의 부정적분과 정적분을 구할 수 있다.

나) 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
고등학교 교과서	미적분	고성은 외	좋은책 신사고	2019	58-64 127-131
	미적분	박교식 외	동아출판	2019	61-66 126-133

5. 문항 해설

삼각함수로 주어지는 정적분에 대해 적절한 적분공식을 활용하여 주어진 적분 식을 표현하고, 삼각함수의 덧셈정리를 활용하여 적분 식을 정리하고 계산하는 능력을 평가한다.

6. 채점 기준

하위 문항	채점 기준	배점
	삼각함수에 대한 정적분을 구할 수 있다.	40
	삼각함수의 덧셈정리를 활용하여 주어진 적분 식을 간단하게 나타낼 수 있다.	55

7. 예시 답안 혹은 정답

[예시답안]

$$\int_{1-a}^{1+a} \frac{\cos a - \cos 1 \cos x}{\sin^2 x} dx$$

$$= \cos a \int_{1-a}^{1+a} \frac{1}{\sin^2 x} dx - \cos 1 \int_{1-a}^{1+a} \frac{\cos x}{\sin^2 x} dx$$

$$= \cos a \left[-\cot x \right]_{1-a}^{1+a} - \cos 1 \left[-\frac{1}{\sin x} \right]_{1-a}^{1+a}$$

$$= -\cos a \left\{ \cot (1+a) - \cot (1-a) \right\} - \cos 1 \left\{ \frac{1}{\sin (1-a)} - \frac{1}{\sin (1+a)} \right\}$$

이다. 삼각함수의 덧셈정리를 이용해 계산하면

$$\begin{aligned} &-\cos a \{\cot (1+a) - \cot (1-a)\} - \cos 1 \left\{ \frac{1}{\sin (1-a)} - \frac{1}{\sin (1+a)} \right\} \\ &= -\cos a \left\{ \frac{\cos (1+a)}{\sin (1+a)} - \frac{\cos (1-a)}{\sin (1-a)} \right\} - \cos 1 \left\{ \frac{1}{\sin (1-a)} - \frac{1}{\sin (1+a)} \right\} \\ &= \frac{\cos 1 - \cos a \cos (1+a)}{\sin (1+a)} - \frac{\cos 1 - \cos a \cos (1-a)}{\sin (1-a)} \\ &= \frac{\cos 1 - \cos a (\cos 1 \cos a - \sin 1 \sin a)}{\sin (1+a)} \\ &= \frac{\cos 1 - \cos a (\cos 1 \cos a + \sin 1 \sin a)}{\sin (1-a)} \\ &= \frac{\cos 1 (1 - \cos^2 a) + \cos a \sin 1 \sin a}{\sin (1-a)} \\ &= \frac{\cos 1 (1 - \cos^2 a) + \cos a \sin 1 \sin a}{\sin (1+a)} - \frac{\cos 1 (1 - \cos^2 a) - \cos a \sin 1 \sin a}{\sin (1-a)} \\ &= \frac{\cos 1 \sin^2 a + \cos a \sin 1 \sin a}{\sin (1+a)} - \frac{\cos 1 \sin^2 a - \cos a \sin 1 \sin a}{\sin (1-a)} \\ &= \frac{\sin a (\cos 1 \sin a + \cos a \sin 1)}{\cos 1 \sin a + \cos a \sin 1} - \frac{\sin a (\cos 1 \sin a - \cos a \sin 1)}{\sin 1 \cos a - \cos 1 \sin a} \\ &= 2 \sin a \end{aligned}$$

이다. 즉

$$\int_{1-a}^{1+a} \frac{\cos a - \cos 1 \cos x}{\sin^2 x} \ dx = 2 \sin a = 2 \sin f(a)$$
이고 $f(x)$ 는 $f(0)=0$ 인 다항식이므로 $f(x)=x$ 이다.

[서울시립대학교 문항정보6]

〈표 VI-6 서울시립대학교 문항정보 6〉

1. 일반 정보

유형	■ 논술고사 □ 면접 및 구술고사 □ 선다형고사		
전형명	2021학년도 수시모집 논술전형		
해당 대학의 계열(과목) / 문항번호	자연계열l		
출제 범위	수학과 교육과정 과목명	수해, 미적분	
	핵심개념 및 용어	미분계수, 여러 가지 함수의 미분법	
예상 소요 시간		30분	

2. 문항 및 제시문

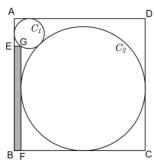
[문제 3] (총 105점)

한 변의 길이가 $3+2\sqrt{2}$ 인 정사각형 ABCD와 그 내부에 원 C_1 , 원 C_2 , 직사각형 EBFG가 다음을 모두 만족시키도록 놓여있다.

- (1) C_1 은 두 변 AB, AD와 각각 한 점에서만 만난다.
- (2) C_2 는 중심이 C_1 밖에 있고 C_1 , 변 BC, 변 CD와 각각 한 점에서만 만난다.
- (3) 점 E는 변 AB에 있고, 점 F는 변 BC에 있다.
- (4) 직사각형 EBFG는 C_1 , C_2 와 각각 한 점에서만 만난다.
- (5) $\overline{BF} < \overline{EB}$

변 BF의 길이를 x라 하고 직사각형 EBFG의 넓이를 f(x)라 하자.

- (a) 함수 f(x)를 구하여라. (65점)
- (b) 함수 f(x)가 미분가능함을 보여라. (40점)



3. 출제 의도

본 문항은 사각형과 원에 대한 이해를 바탕으로 구체적인 함수를 유도하고 이 함수의 미분가능성을 확인 하는 능력을 평가한다.

4. 출제 근거

가) 적용 교육과정 및 학습내용 성취 기준

적용 교육과정	수핵I - (2) 미분 - ① 미분계수 미적분 - (2) 미분법 - ⑦ 여러 가지 미분법
문항 및 제시문	학습내용 성취 기준
	[12수핵II02-01] 미분계수의 뜻을 알고, 그 값을 구할 수 있다. [12미적02-07] 합성함수를 미분할 수 있다.

나) 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
고등학교	수해	권오남 외	교학사	2018	54-59
교과서	미적분	홍석복 외	지학사	2019	88-94

5. 문항 해설

도형들 사이의 위치관계를 주어진 조건으로부터 풀어나가는 능력을 평가한다. 상황을 수학적으로 분석하고 이해하여 경우에 따라서 표현이 달라짐을 평가한다. 함수의 미분가능에 대한 이해를 바탕으로 구간별로 정의되는 함수의 미분가능성을 확인하는 계산 능력을 평가한다.

6. 채점 기준

하위 문항	채점 기준	배점
(a)	주어진 함수를 구한다.	65
(b)	함수의 미분가능성을 확인한다.	40

7. 예시 답안 혹은 정답

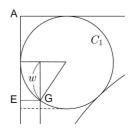
[예시답안]

 $d=3+2\sqrt{2}$ 라 하자.

(a) C_1 과 C_2 의 반지름을 각각 y, z라 하자. $\overline{AC} = \sqrt{2}\,y + y + z + \sqrt{2}\,z = \sqrt{2}\,d$ 이므로 $y + z = 2 + \sqrt{2}\,$ 이다. $\overline{BF} + \overline{FC} = \overline{BC}$ 이므로 x + 2z = d이고 $z = \frac{d-x}{2}$ 이다. 따라서 $y = 2 + \sqrt{2} - z = \frac{1+x}{2}$ 이다.

(i) *x* < *y*일 경우

 $y=rac{1+x}{2}$ 이므로 x<1이다. C_1 의 중심을 지나고 $\overline{\mathrm{AD}}$ 와 평행한 직선과 점 G사이의 거리를 w라고 하면



$$w = \sqrt{y^2 - (y-x)^2} = \sqrt{\left(\frac{1+x}{2}\right)^2 - \left(\frac{1-x}{2}\right)^2} = \sqrt{x}$$
이다. $\overline{\mathrm{EB}} = d - y - w = d - \frac{1+x}{2} - \sqrt{x}$ 이므로 $0 < x < 1$ 이고 $f(x) = \overline{\mathrm{BF}} \cdot \overline{\mathrm{EB}} = x \left(d - \frac{1+x}{2} - \sqrt{x}\right)$ 이다.

(ii) $x \ge y$ 일 경우

 $y=rac{1+x}{2}$ 이므로 $x\geq 1$ 이다. 또한 $\overline{\mathrm{EG}}$ 가 C_1 에 접하므로 $\overline{\mathrm{EB}}=d-2y=d-1-x$ 이다. 조건 (5)로부터 x< d-1-x이므로 $x<1+\sqrt{2}$ 이다. 따라서 $1\leq x<1+\sqrt{2}$ 이고 $f(x)=\overline{\mathrm{BF}}\cdot\overline{\mathrm{EB}}=x(d-1-x)$ 이다.

(i)과 (ii)에 의해

$$f(x) = \begin{cases} x \left(3 + 2\sqrt{2} - \frac{1+x}{2} - \sqrt{x} \right) & (0 < x < 1) \\ x(2+2\sqrt{2}-x) & (1 \le x < 1+\sqrt{2}) \end{cases}$$

이다.



(b) 0 < x < 1과 $1 < x < 1 + \sqrt{2}$ 에서 f(x)는 미분가능한 함수의 | 합과 곱으로 정의되었으므로 각 구간에서 미분가능하다. x = 1 에서의 미분가능성을 확인하자.

$$\lim_{h \to 0-} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0-} \frac{(1+h) \left\{ 3 + 2\sqrt{2} - \frac{1 + (1+h)}{2} - \sqrt{1+h} \right\} - (1 + 2\sqrt{2})}{h} = 2\sqrt{2}$$

$$\lim_{h \to 0+} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0+} \frac{(1+h) \left\{ 2 + 2\sqrt{2} - (1+h) \right\} - (1 + 2\sqrt{2})}{h} = 2\sqrt{2}$$

이다. 따라서 f(x)는 x=1에서 미분가능하고, f(x)는 $0 < x < 1 + \sqrt{2}$ 에서 미분가능하다.

[서울시립대학교 문항정보7]

〈표 VI-7 서울시립대학교 문항정보 7〉

1. 일반 정보

유형	■ 논술고사 □ 면접 및 구술고사 □ 선다형고사			
전형명	2021학년도 수시모집 논술전형			
해당 대학의 계열(과목) / 문항번호		자연계열		
출제 범위	수학과 교육과정 과목명	수학		
	핵심개념 및 용어	등차수열, 삼각함수		
예상 소요 시간	35분			

2. 문항 및 제시문

[문제 4] (115점)

자연수 n에 대하여 다음을 모두 만족시키는 세 자연수 a, b, c의 순서쌍 (a, b, c)의 개수를 구하여라.

- (1) $1 \le a < b < c \le 6n$
- (2) a+c=2b
- (3) $\sin\left(\frac{\pi a}{6n}\right) < \sin\left(\frac{\pi b}{6n}\right) < \sin\left(\frac{\pi c}{6n}\right)$

3. 출제 의도

본 문항은 사인함수를 해석하고 등차수열의 이해 수준과 그 구체적인 적용 능력을 평가하고자 한다.

4. 출제 근거

가) 적용 교육과정 및 학습내용 성취 기준

적용 교육과정	[수핵] - (2) 삼각함수 - ① 삼각함수
10 110	[수핵] - (3) 수열 - ① 등차수열과 등비수열
문항 및 제시문	학습내용 성취 기준
	[12수핵 03-02] 등차수열의 뜻을 알고, 일반항, 첫째항부터 제 n항까지의 합을 구할
	수 있다.
	[12수핵 02-02] 삼각함수의 뜻을 알고, 사인함수, 코사인함수, 탄젠트함수의
	그래프를 그릴 수 있다.

나) 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
고등학교	수핵	김원경 외	비상	2018	76-93 119-126
	수햌	배종숙 외	(주)금성출 판사	2018	83–89 124–133
기타					

5. 문항 해설

사인함수를 포함한 문제의 조건을 이해하고 활용할 수 있는 능력이 있는지 확인하고, 이러한 조건을 만족하는 자연수의 순서쌍의 개수를 등차수열의 합으로 표현할 수 있는지를 평가한다.

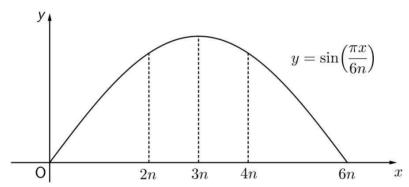
6. 채점 기준

하위 문항	채점 기준	배점
	사인함수로 주어진 조건을 이해하고, 주어진 조건에 따른 경우를 나누고 순서쌍의 개수를 수열의 일반항으로 구한다.	90
	순서쌍의 개수를 나타내는 등차수열의 합을 계산할 수 있다.	25

7. 예시 답안 혹은 정답

[예시답안]

 $f(x) = \sin\left(\frac{\pi x}{6n}\right)$ 라 하자. 함수 y = f(x)의 그래프는 다음과 같다.



a, b, c는 서로 다른 자연수이므로 $2 \le b \le 6n-1$ 이다.

(i) 2 ≤ b ≤ 2n 일 경우

a는 자연수이므로 조건 (2)에 의해 c < 4n이다. 따라서 함수 y = f(x)의 그래프에 의해서 f(a) < f(b) < f(c)을 만족시킨다. b에 대하여 a를 1부터 b-1까지 선택할 수 있으므로 세 자연수 a,b,c의 순서쌍 (a,b,c)의 개수는 b-1이다.

(ii) 2n < b < 3n 일 경우

y=f(x)는 x=3n에 대해서 대칭이므로 f(b) < f(c)를 만족시키기 위해서는 b < c < 6n-b이어야 한다. 또한 c가 b < c < 6n-b인 경우 a는 1과 b 사이에 존재하고 f(a) < f(b)이다. b에 대하여 c는 b+1부터 6n-b-1까지 선택할 수 있으므로 세 자연수 a,b,c의 순서쌍 (a,b,c)의 개수는 6n-2b-1이다.

(iii) $3n \le b \le 6n - 1$ 일 경우

함수 y=f(x)의 그래프로부터 f(b)>f(c)이므로 주어진 조건을 만족시키는 순서쌍 (a,b,c)가 존재하지 않는다.

(i), (ii), (iii)에 의해서 주어진 조건을 모두 만족시키는 세 자연수 a, b, c의 순서쌍 (a, b, c)의 개수는

$$\sum_{b=2}^{2n} (b-1) + \sum_{b=2n+1}^{3n-1} (6n-2b-1) = 3n^2 - 3n + 1$$

2) 자연계열표

[서울시립대학교 문항정보8]

〈표 VI-8 서울시립대학교 문항정보 8〉

1. 일반 정보

유형	■ 논술고사 □ 면접 및 구술고사 □ 선다형고사			
전형명	2021학년도 수시모집 논술전형			
해당 대학의 계열(과목) / 문항번호		자연계열॥		
출제 범위	수학과 교육과정 과목명	수핵		
	핵심개념 및 용어	접선, 도형의 넓이		
예상 소요 시간	25분			

2. 문항 및 제시문

[문제 1] (85점)

 $f(x) = x^4 + 2ax^3 - 3a^2x^2 + 4a^4 - 4a^3 + 1$ (a > 0)이다. 곡선 y = f(x)가 점 (1, 1)을 지나는 직선과 서로 다른 두 점에서 접할 때, 이 직선과 곡선 y = f(x)로 둘러싸인 도형의 넓이를 구하여라.

3. 출제 의도

본 문항은 곡선과 직선이 접할 때 접점의 좌표를 구하고, 정적분을 활용하여 곡선과 직선으로 둘러싸인 도형의 넓이를 구하는 능력을 평가한다.

4. 출제 근거

가) 적용 교육과정 및 학습내용 성취 기준

적용 교육과정	수핵II - (3)적분 - ③정적분의 활용
문항 및 제시문	학습내용 성취 기준
	[12수핵 03-05] 곡선으로 둘러싸인 도형의 넓이를 구할 수 있다.

나) 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
고등학교 교과서	수핵I	이준열 외 9인	천재교육	2018	132-138
	수핵I	배종숙 외 6인	금성출판사	2018	138-140

5. 문항 해설

본 문항은 곡선과 직선이 접할 때, 교점을 찾아 정적분을 활용하여 곡선과 직선으로 둘러싸인 도형의 넓이를 구하는 능력을 평가한다.

하위 문항	채점 기준	배점
	곡선과 직선이 접할 때, 접점을 구할 수 있다.	45
	정적분을 활용하여 곡선과 직선으로 둘러싸인 도형의 넓이를 구할 수 있다.	40

7. 예시 답안 혹은 정답

점 (1,1)을 지나며 기울기가 m인 직선의 방정식은 y=m(x-1)+1이다. 곡선 y=f(x)와 직선 y=m(x-1)+1이 서로 다른 두 점에서 접할 때, 이 두 점의 x좌표를 각각 α , β (단, $\alpha<\beta$)라 하면,

$$(x-\alpha)^2(x-\beta)^2 = x^4 + 2ax^3 - 3a^2x^2 + 4a^4 - 4a^3 + 1 - \{m(x-1) + 1\}$$

이다. x^3 , x^2 , x의 계수와 상수항을 비교하면

$$-2(\alpha+\beta) = 2a$$
, $\alpha^2 + 4\alpha\beta + \beta^2 = -3a^2$, $-2\alpha\beta(\alpha+\beta) = -m$, $\alpha^2\beta^2 = 4a^4 - 4a^3 + m$

이므로 $m=4a^3$ 이고 $\alpha=-2a$, $\beta=a$ 이다. 직선 $y=4a^3(x-1)+1$ 와 곡선 y=f(x)로 둘러싸인 도형의 넓이는

$$\int_{-2a}^{a} \left\{ (x^4 + 2ax^3 - 3a^2x^2 + 4a^4 - 4a^3 + 1) - (4a^3x - 4a^3 + 1) \right\} dx$$

$$= \left[\frac{1}{5}x^5 + \frac{1}{2}ax^4 - a^2x^3 - 2a^3x^2 + 4a^4x \right]_{-2a}^{a} = \frac{81}{10}a^5$$

[서울시립대학교 문항정보9]

〈표 VI-9 서울시립대학교 문항정보 9〉

1. 일반 정보

유형	■ 논술고사 □ 면접 및 구술고사 □ 선다형고사			
전형명	2021학년도 수시모집 논술전형			
해당 대학의 계열(과목) / 문항번호		자연계열॥		
출제 범위	수학과 교육과정 과목명	수학		
	핵심개념 및 용어	경우의 수, 조합		
예상 소요 시간	30분			

2. 문항 및 제시문

[문제 2] (95점)

자연수 n $(n \geq 9)$ 에 대하여 n 이하의 자연수 전체의 집합을 A_n 이라 하자. 다음을 모두 만족시키는 함수 $f: A_n \to \{\,0,\,1,\,2\,\}$ 의 개수를 구하여라.

- (1) 집합 $\{k \mid f(k) = 0, k \in A_n\}$ 의 원소의 개수는 3이다.
- (2) 집합 $\{k \mid f(k) = 1, k \in A_n\}$ 의 원소의 개수는 3이다.
- (3) n 이하의 모든 자연수 k에 대하여 $\sum_{i=1}^{k} f(i) \ge k$ 이다.

3. 출제 의도

조합을 이해하고 이를 적용하여, 주어진 성질을 만족하는 경우의 수를 구하는 능력을 평가한다.

4. 출제 근거

가) 적용 교육과정 및 학습내용 성취 기준

적용 교육과정	수학 - (5) 확률과 통계 - ① 경우의 수, ② 순열과 조합
문항 및 제시문	학습내용 성취 기준
	[10수학05-01] 합의 법칙과 곱의 법칙을 이해하고, 이를 이용하여 경우의 수를 구할수 있다. [10수학05-03] 조합의 의미를 이해하고, 조합의 수를 구할 수 있다.

나) 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
고등학교	수학	박교식 외	동아출판	2018	254-258 264-274
	수학	이준열 외	천재교육	2018	262-266 272-275

5. 문항 해설

함수의 조건을 이해하고 경우의 수와 조합을 활용하여, 조건을 만족시키는 함수의 개수를 세는 능력을 평가한다.

하위 문항	채점 기준	배점
	특정 경우에 주어진 조건을 만족시키는 함수의 개수를 조합을 이용해 구한다.	55
	일반적인 경우에 주어진 조건을 만족시키는 함수의 개수를 곱의 법칙을 이용해 구한다.	40

7. 예시 답안 혹은 정답

[예시답안]

- (i) f(n-2) = f(n-1) = f(n) = 1일 경우를 생각하자. 그러면 조건 (1)과 (2)를 모두 만족시키지만 조건 (3)을 만족시키지 않는 함수의 개수는 다음과 같다.
- f(1) = 0의 경우 함수의 개수는 $_{n-4}$ C₂이다.
- f(1) = 2, f(2) = 0, f(3) = 0의 경우 함수의 개수는 n-6C1이다.
- f(1) = 2, f(2) = 0, f(3) = 2, f(4) = 0, f(5) = 0의 경우 함수의 개수는 1이다.
- f(1) = 2, f(2) = 2, f(3) = 0, f(4) = 0, f(5) = 0의 경우 함수의 개수는 1이다.

따라서 이 경우에 문제의 조건을 모두 만족시키는 함수의 개수는 조건 (1)과 (2)를 모두 만족시키는 함수의 개수에서 위 네 가지 경우에 해당하는 함수의 개수를 뺀 것과 같다. 즉

$$_{n-3}C_3 - (_{n-4}C_2 + _{n-6}C_1 + 1 + 1) = \frac{(n-3)(n-4)(n-8)}{6}$$

이다.

(ii) 일반적으로 $1 \le a < b < c \le n$ 인 a, b, c에서 f(a) = f(b) = f(c) = 1일 경우는 a, b, c의 선택이 조건 (3)의

부등식의 성립여부에 영향을 주지 않는다. 따라서 주어진 조건을 모두 만족시키는 함수의 개수도 $\frac{(n-3)(n-4)(n-8)}{6}$ 이다.

따라서 문제의 조건을 모두 만족시키는 함수의 개수는

$${}_{n}C_{3} \times \frac{(n-3)(n-4)(n-8)}{6} = \frac{n(n-1)(n-2)(n-3)(n-4)(n-8)}{36}$$

[서울시립대학교 문항정보10]

⟨표 Ⅵ-10 서울시립대학교 문항정보10⟩

1. 일반 정보

유형	■ 논술고사 □ 면접 및 구술고사 □ 선다형고사		
전형명	2021학년도 수시모집 논술전형		
해당 대학의 계열(과목) / 문항번호	자연계열॥		
출제 범위	수학과 교육과정 과목명	수핵I	
	핵심개념 및 용어	접선, 수직, 최솟값	
예상 소요 시간	30분		

2. 문항 및 제시문

[문제 3] (총 105점)

다음 물음에 답하여라.

(a) 미분가능한 함수 f(x)에 대하여, 곡선 y = f(x)의 점 P와 이 곡선에 있지 않은 점 Q가 다음을 만족시킬 때, 곡선 y = f(x)의 점 P에서의 접선과 직선 PQ가 수직임을 보여라. (55점)

곡선 y = f(x)의 모든 점 X에 대하여 $\overline{PQ} \le \overline{XQ}$ 이다.

(b) 곡선 $y=x^2$ 에서 움직이는 점 P와 곡선 $y=-(x-6)^2$ 에서 움직이는 점 Q에 대하여 \overline{PQ} 의 최솟값을 구하여라. (50점)

3. 출제 의도

곡선과 곡선 밖의 한 점의 거리가 최소가 되는 조건에 대한 정리를 증명할 수 있는지 평가한다. 이를 이용해 곡선과 곡선 사이의 최단 거리를 구할 수 있는지 평가한다.

4. 출제 근거

가) 적용 교육과정 및 학습내용 성취 기준

적용 교육과정	수해! - (2)미분 - ①미분계수, ③도함수의 활용
문항 및 제시문	학습내용 성취 기준
	[12수핵I02-02] 미분계수의 기하적 의미를 이해한다. [12수핵I02-08] 함수의 증가와 감소, 극대와 극소를 판정하고 설명할 수 있다.

나) 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
고등학교	수핵	이준열 외 9인	천재교육	2018	74–46 83–89
교과서	수핵	배종숙 외 6인	금성출판사	2018	73–74 87–90

5. 문항 해설

곡선과 곡선 밖의 한 점의 거리가 최소가 되는 조건에 대한 정리를 증명할 수 있는지 평가한다. 이를 이용해 곡선과 곡선 사이의 최단 거리를 구할 수 있는지 평가한다.

하위 문항	채점 기준	배점
(a)	미분을 활용하여 곡선과 곡선 밖의 한 점의 거리가 최소가 되는 조건에 대한 정리를 증명한다.	55
(p)	곡선과 곡선 사이의 최단 거리를 구한다.	50

7. 예시 답안 혹은 정답

(a) 곡선 y = f(x)의 점 P의 좌표를 (p, f(p))라 하고, 점 Q(a, b)라 하자. 곡선 y = f(x)의 모든 점 X(x, f(x))에 대하여 $\overline{PQ} \leq \overline{XQ}$ 이다. 함수 $g(x) = \overline{XQ}^2 = (x-a)^2 + (f(x)-b)^2$ 는 미분가능한 함수이고, 최 솟값은 $g(p) = \overline{PQ}^2$ 이다. 따라서

$$g'(p) = 2(p-a) + 2(f(p)-b)f'(p) = 0$$

이다.

 $p \neq a$ 이면 $\frac{f(p)-b}{p-a} \cdot f'(p) = -1$ 이고, 곡선 y = f(x)의 점 P에서의 접선과 직선 PQ가 수직이다.

p=a이면 직선 PQ는 y축과 평행하고, 점 Q(a,b)가 곡선 y=f(x)에 있지 않으므로 $f(p)\neq b$ 이다. 따라서 f'(p)=0이므로 곡선 y=f(x)의 점 P에서의 접선은 x축과 평행하므로, 곡선 y=f(x)의 점 P에서의 접선과 직선 PQ가 수직이다.

(b) \overline{PQ} 가 최소일 때 곡선 $y=x^2$ 의 점을 $A(a,a^2)$, 곡선 $y=-(x-6)^2$ 의 점을 $B(b,-(b-6)^2)$ 이라 하자. 그러면 (a)에 의해 다음을 모두 만족시킨다.

① 곡선 $y=x^2$ 의 점 A에서의 접선 l_1 과 곡선 $y=-(x-6)^2$ 의 점 B에서의 접선 l_2 가 서로 평행하다.

② 두 점 A, B를 지나는 직선은 두 접선 l_1 , l_2 와 동시에 수직이다.

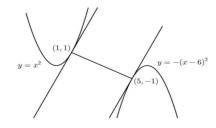
조건 ①로부터 a=-b+6이다. a=b이면 a=b=3이고 조건 ②를 만족시키지 않으므로 $a\neq b$ 이다. 그러면 조건 ②로부터

$$\frac{a^2 + (b-6)^2}{a-b} \cdot 2a = -1, \qquad \frac{a^2 + (b-6)^2}{a-b} \cdot \{-2(b-6)\} = -1$$

이다.

$$2a^3 + a - 3 = (a - 1)(2a^2 + 2a + 3) = 0$$

이므로, a=1이고 b=5이다. 따라서 $\overline{AB}=2\sqrt{5}$ 이므로 최속값은 $2\sqrt{5}$ 이다.



[서울시립대학교 문항정보11]

⟨표 Ⅵ-11 서울시립대학교 문항정보11⟩

1. 일반 정보

유형	■ 논술고사 □ 면접 및 구술고사 □ 선다형고사		
전형명	2021학년도 수시모집 논술전형		
해당 대학의 계열(과목) / 문항번호	자연계열॥		
출제 범위	수학과 교육과정 과목명	수학	
	핵심개념 및 용어	등비수열	
예상 소요 시간	35분		

2. 문항 및 제시문

[문제 4] (115점)

함수 y = f(x) $(x \ge 1)$ 가 다음을 만족시킨다.

모든 자연수 m에 대하여 $64^{m-1} \le x < 64^m$ 이면 $f(x) = 8^m$ 이다.

자연수 k에 대하여 함수 $y=\frac{1}{k^3}x^2$ 의 그래프와 함수 y=f(x)의 그래프의 교점의 개수를 a_k 라 하자.

$$n=2^{300}$$
일 때, $\sum_{k=1}^{n}a_{k}$ 를 구하여라.

3. 출제 의도

본 문항은 이차함수의 그래프와 직선의 교점을 개수를 이해와 등비수열의 이해 수준과 그 구체적인 적용 능력을 평가한다.

4. 출제 근거

가) 적용 교육과정 및 학습내용 성취 기준

적용 교육과정	[수핵] - (3) 수열 - ① 등차수열과 등비수열
문항 및 제시문	학습내용 성취 기준
	[12수핵 03-03] 등비수열의 뜻을 알고, 일반항, 첫째항부터 제 n항까지의 합을 구할 수 있다.

나) 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
고등학교	수핵	권오남 외	교학사	2018	126-135
교과서	수핵	박교식 외	동아출판	2018	115-125

5. 문항 해설

등비수열을 포함한 함수의 조건을 이해하고, 주어진 이차함수의 그래프와의 교점의 개수를 등비수열로 표현하고 그 합을 계산할 수 있는지를 평가한다.

하위 문항	채점 기준	배점
	주어진 함수의 조건을 이해하고 이 함수의 그래프와 주어진 이차함수의 그래프와의 교점이 발생한 조건을 구한다.	40
	구한 조건을 이용하여 두 함수의 그래프의 교점의 개수를 등비수열의 합으로 표현하고 그것을 계산한다.	75

7. 예시 답안 혹은 정답

[예시답안]

자연수 m에 대하여 $64^{m-1} \le x < 64^m$ 에서 포물선 $y = \frac{1}{k^3} x^2$ 와 직선 $y = 8^m$ 의 교점의 개수는 0 혹은 1이 되고 되어 지수가 되어 지수가 되어 64^{2m-2} 이번 π

다. 교점의 개수가 1일 필요충분조건은
$$\frac{64^{2m-2}}{k^3} \le 8^m < \frac{64^{2m}}{k^3}$$
이다. 즉

$$2^{3m-4} \le k < 2^{3m} \ (1 \le k \le 2^{300})$$
 ... ①

이다. $\sum_{k=1}^{2^{300}} a_k$ 는 ①을 만족시키는 자연수의 순서쌍 (k,m)의 개수와 같다. 따라서 각 m에 대하여 b_m 을 ①을 만족시키는 k의 개수라 하면

$$b_m = n \big(\big\{ \, k \, | \, 1 \leq k \leq 2^{300}, \, 2^{3m-4} \leq k < 2^{3m} \big\} \big) = \begin{cases} 7 & (m=1) \\ 2^{3m} - 2^{3m-4} & (2 \leq m \leq 100) \\ 2^{300} - 2^{299} + 1 & (m=101) \\ 0 & (m>101) \end{cases}$$

이므로

$$\sum_{k=1}^{2^{300}} a_k = \sum_{m=1}^{101} b_m = 7 + \sum_{m=2}^{100} (2^{3m} - 2^{3m-4}) + 2^{300} - 2^{299} + 1 = \frac{11 \cdot 2^{300} - 4}{7}$$

