[문항카드 1]

1. 일반정보

유형	■ 논술고사 □ 면접 및 구술고사		
전형명	논술우수자전형		
해당 대학의 계열(과목) / 문항번호	자연계열 / 1교시 1번		
출제 범위	수학과 교육과정 과목명 수학, 수학 11, 미적분, 확률과 통계		
실세 럽지	핵심개념 및 용어 수직과 평행, 좌표평면에서의 속도, 허근, 확률변수		
예상 소요 시간	60분 / 전체 120분		

2. 문항 및 제시문

[문제 1] (50점) 다음 제시문을 읽고 문항별로 풀이와 함께 답하시오.

1. 좌표평면 위에서 속도와 속도의 크기

좌표평면 위를 움직이는 점 P의 시각 t 에서의 좌표 (x,y)가 x=f(t),y=g(t)로 나타내어질 때, 점 P의 속도와 속도의 크기는 다음과 같다.

속도:
$$(f'(t), g'(t))$$
, 속도의 크기: $\sqrt{\{f'(t)\}^2 + \{g'(t)\}^2}$

2. 사잇값의 정리

함수 f(x)가 닫힌구간 [a,b]에서 연속이고 $f(a) \neq f(b)$ 이면, f(a)와 f(b) 사이에 있는 임의의 실수 k에 대하여 다음을 만족하는 c가 열린구간 (a,b)에 적어도 하나 존재한다.

$$f(c) = k$$

- [1] 직선 ax + 2y + 4 = 0이 직선 2bx 5y + 10 = 0과 수직이고 직선 (b+1)x + 2y 7 = 0과 평행일 때, 물음에 답하시오. (단, a, b는 실수)
 - (1) $a^2 + b^2$ 의 값을 구하시오. [6점]
 - (2) 두 직선 ax + 2y + 4 = 0, 2bx 5y + 10 = 0과 y 축으로 둘러싸인 삼각형의 넓이의 최댓값을 구하시오. [7점]
- [2] 좌표평면 위를 움직이는 점 P의 시각 t에서의 위치 (x,y)가

$$x = \frac{\cos t}{t}, \quad y = \frac{\sin t}{t} \quad (t \ge \pi)$$

이다. 시각 t에서의 점 P의 속도를 $v(t)=(v_x,\,v_y)$, 속도의 크기를 w(t)라 할 때, 물음에 답하시오.

- (1) v(t)와 w(t)를 구하시오. [6점]
- (2) $\lim_{t\to\infty}t^nw(t)$ 가 수렴하도록 하는 자연수 n의 값을 구하시오. [5점]
- (3) 점 P에서 x축에 내린 수선의 발을 Q라 하면, 점 Q는 x축 위를 움직이는 직선 운동을 한다.

이때 시각 $t=\pi$ 에서 $t=3\pi$ 까지 점 Q가 움직이는 방향을 최소한 2번 바꿈을 보이시오. [9점]

[3] 삼차방정식 $x^3 = 1$ 의 한 허근 ω 가 다음 식을 만족시킬 때, 물음에 답하시오. (단, a, b는 실수)

$$\frac{\omega}{3+\omega} = a + b\omega$$

- (1) 주어진 식을 만족하는 a, b의 값을 구하시오. [7점]
- (2) 집합 $A = \{1, a, b\}$ 에서 두 원소를 선택하여 그 합을 확률변수 X라 할 때 X의 확률분포를 표로 나타내고, 기댓값 E(X)를 구하시오. (단, 선택은 중복을 허용한다.) [10점]

3. 출제 의도

- [1] 두 직선의 수직과 평행을 이해하고, 조건을 만족하는 방정식을 구하여 문제를 해결하는 과정을 설명할 수 있는 능력을 판단한다.
- [2] 좌표평면에서 움직이는 물체의 속도와 속도의 크기를 이해하고 이를 통해 응용 문제를 해결하는 과정을 설명할 수 있는 능력을 판단한다.
- [3] 복소수의 성질을 이용하여 방정식을 해결하는 과정을 설명할 수 있는 능력을 판단한다. 그리고, 확률변수와 확률분포를 이해하고 주어진 문제의 기댓값을 구하는 과정을 설명할 수 있는 능력을 판단한다.

4. 출제 근거

1. 교육과정 근거

문항 및	Ų 제시문	관련 성취기준			
제시문1	교육과정	[미적분] - (2) 미분법 - ③ 도함수의 활용			
세시 <u>단</u> 1	성취기준	[12미적02-14] 속도와 가속도에 대한 문제를 해결할 수 있다.			
제시문2	교육과정	[수학॥] - (1) 함수의 극한과 연속 - ② 함수의 연속			
세시正2	성취기준	[12수학Ⅲ01-04] 연속함수의 성질을 이해하고, 이를 활용할 수 있다.			
문항	교육과정	[수학] - (2) 기하 - ② 직선의 방정식			
1	성취기준	[10수학02-04] 두 직선의 평행 조건과 수직 조건을 이해한다.			
문항	교육과정	[수학] - (2) 기하 - ③ 원의 방정식			
[1](2)	성취기준	[10수학02-06] 원의 방정식을 구할 수 있다.			
ㅁ하	교육과정	[미적분] - (2) 미분법 - ① 여러 가지 함수의 미분 ② 여러 가지 미분법 ③ 도함수의 활용			
문항 [2](1)	성취기준	[12미적02-05] 사인함수와 코사인함수를 미분할 수 있다. [12미적02-06] 함수의 몫을 미분할 수 있다. [12미적02-14] 속도와 가속도에 대한 문제를 해결할 수 있다.			

문항	교육과정	[수학II] - (1) 함수의 극한과 연속 - ① 함수의 극한
2	성취기준	[12수학II01-02] 함수의 극한에 대한 성질을 이해하고, 함수의 극한값을 구할 수 있다.
문항	교육과정	[수학II] - (1) 함수의 극한과 연속 - ② 함수의 연속 [수학II] - (2) 미분 - ③ 도함수의 활용
[2](3)	성취기준	[12수학Ⅱ01-04] 연속함수의 성질을 이해하고, 이를 활용할 수 있다. [12수학Ⅱ02-11] 속도와 가속도에 대한 문제를 해결할 수 있다.
ㅁᇂ	교육과정	[수학] - (1) 문자와 식 - ① 복소수와 이차방정식 [중학교 1~3학년] - (2) 문자와 식 - ① 일차부등식과 연립일차방정식
문항 [3](1)	성취기준	[10수학01-05] 복소수의 뜻과 성질을 이해하고 사칙연산을 할 수 있다. [9수02-11] 미지수가 2개인 연립일차방정식을 풀 수 있고, 이를 활용하여 문 제를 해결할 수 있다.
문항	교육과정	[확률과 통계] - (3) 통계 - ① 확률분포
[3](2)	성취기준	[12확통03-01] 확률변수와 확률분포의 뜻을 안다. [12확통03-02] 이산확률변수의 기댓값(평균)과 표준편차를 구할 수 있다.

^{*:} 교육과학기술부 고시 제 2015-74호 [별책 8] "수학과 교육과정"

2. 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
고등학교교과서	수학	박교식 외	동아출판(주)	2020	41, 118, 129
	수학 ॥	류희찬 외	㈜천재교과서	2020	34, 98
	미적분	이준열 외	㈜천재교육	2020	76, 83, 122
	확률과 통계	고성은 외	㈜좋은책신사고	2020	79, 84
기타					

5. 문항 해설

- [1] (1) 두 직선의 평행 조건과 수직 조건에 대한 이해를 바탕으로 연립방정식을 도출하여 해결할 수 있다.
- (2) 한 선분을 지름으로 하는 원의 성질에 대한 이해를 바탕으로 해결할 수 있다.

또는 (1)에서 구한 수직 조건으로부터 얻은 함수의 최댓값을 구함으로서 해결할 수 있다.

- [2] (1) 주어진 함수의 도함수를 차례로 계산하여 속도와, 속도의 크기를 구하는 문항이다.
- (2) 함수의 극한에 대한 성질을 적용하여 각 자연수에 대한 극한값을 구하여 해결할 수 있다.
- (3) 주어진 상황에서 연속함수의 사잇값정리를 적용하여 문제를 해결하는 문항이다.
- [3] (1) 인수분해를 통해 얻은 방정식과 복소수의 성질을 이용하여 해결할 수 있다.
- (2) 확률변수와 확률을 구하고 이를 표로 나타낸 다음 기댓값을 계산하는 문항이다.

6. 채점 기준

하위 문항	채점 기준	배점
1	수직과 평행의 조건으로부터 a, b 에 대한 연립방정식을 구하였으면	4
1	a^2+b^2 를 정확히 구했으면	2
[1](2)	두 직선의 교점이 원에 놓여 있음을 잘 기술하였으면	4
[1](2)	넓이의 최댓값을 정확히 구하였으면	3
[2]/1)	v(t)를 정확히 구하였으면	3
[2](1)	w(t)를 정확히 구하였으면	3
2	각각의 자연수를 대입하여 극한을 구하였으면	3
2	구하는 값을 정확히 도출하였으면	2
	사잇값정리를 적용하였으면	3
[2](3)	$t=\pi$ 에서 $t=2\pi$ 사이에서 방향이 바뀌는 것을 보였으면	3
	$t=2\pi$ 에서 $t=3\pi$ 사이에서 방향이 바뀌는 것을 보였으면	3
[3](1)	a,b가 만족하는 연립방정식을 정확히 유도하였으면	5
[3](1)	a, b 를 각각 정확히 구하였으면	2
	확률변수를 정확히 구하였으면	3
[3](2)	확률을 구하여 확률분포를 정확히 표로 나타내었으면	4
	기댓값을 정확히 구했으면	3

7. 예시 답안

[1]

(1)
$$ax + 2y + 4 = 0$$

$$2bx - 5y + 10 = 0$$
 ②

$$(b+1)x + 2y - 7 = 0$$
 3

① ⊥ ② 이므로 다음을 얻는다.

$$a \cdot (2b) + 2 \cdot (-5) = 0$$
 , $= ab = 5$

①//③이므로 다음을 얻는다.

$$\frac{a}{2} = \frac{b+1}{2} , \qquad \quad \, \, \stackrel{\textstyle \stackrel{\scriptstyle \leftarrow}{}}{\textstyle =} \quad a-b=1$$

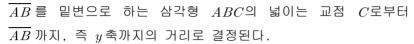
따라서 구하는 값은 다음과 같다.

$$a^{2} + b^{2} = (a - b)^{2} + 2ab = (1)^{2} + 2 \cdot 5 = 11$$

(2) 직선 ax + 2y + 4 = 0은 a의 값에 관계없이 점 A(0, -2)를 지나고, 직선 2bx - 5y + 10 = 0은 b의 값에 관계없이 점 B(0, 2)를 지난다.

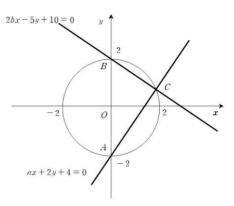
그리고 두 직선이 서로 수직으로 만나므로 두 직선의 교점은 오른쪽 그림과 같이 \overline{AB} 를 지름으로 하는 원 위에 놓인다.

두 직선의 교점을 C라 하면 삼각형 ABC는 문제에서 주어진 삼각형이 된다.



교점 C의 좌표가 (2,0)일 때 \overline{AB} 의 길이가 최대가 되고, 따라서 삼각형 ABC의 넓이의 최댓값은 다음과 같다.

$$\frac{1}{2} \times 4 \times 2 = 4$$



[2]

(2)
$$n = 1$$
일 때, $\lim_{t \to \infty} t^n w(t) = \lim_{t \to \infty} \sqrt{1 + \frac{1}{t^2}} = 1$ $n = k \ (k \ge 2)$ 일 때, $\lim_{t \to \infty} t^n w(t) = \lim_{t \to \infty} t^{k-1} \sqrt{1 + \frac{1}{t^2}} = \infty$ 기러므로 구하는 자연수 $n = 1$

(3) 시각 t에서의 점 Q의 속도를 u(t)라 하면 식 ①로부터 $u(t)=v_x=\frac{-\sin t}{t}-\frac{\cos t}{t^2}$ 이고 u(t)는 $t\geq\pi$ 에서 연속함수이다. $u(\pi)=\frac{1}{\pi^2}>0$ 이고 $u(2\pi)=-\frac{1}{4\pi^2}<0$ 이므로 사잇값의 정리로부터 운동 방향이 바뀌는 $u(t_1)=0$ 인 시각 t_1 이 π 와 2π 사이에 존재한다.

또 $u(3\pi)=\frac{1}{9\pi^2}>0$ 이므로 사잇값의 정리로부터 운동 방향이 바뀌는 $u(t_2)=0$ 인 시각 t_2 가 2π 와 3π 사이에 존재한다.

그러므로 시각 $t=\pi$ 에서 $t=3\pi$ 까지 점 Q는 움직이는 방향을 최소한 2번 바꾼다.

[3]

(1)
$$x^3 - 1 = (x - 1)(x^2 + x + 1) = 0$$
 이므로 ω 는 다음을 만족한다.

$$\omega^2 + \omega + 1 = 0 \cdots 1$$

주어진 식의 양변에 $3 + \omega$ 를 곱해 정리하면

$$\omega = (a + b\omega)(3 + \omega)$$

$$=3a+(a+3b)\omega+b\omega^2$$

$$b\omega^2 + (a+3b-1)\omega + 3a = 0 \cdots 2$$

식 ①을 식 ②에 대입하고 정리하면

$$b(-\omega-1) + (a+3b-1)\omega + 3a = (a+2b-1)\omega + 3a - b = 0$$

 ω 가 허근이므로

$$a + 2b = 1,$$
 $3a - b = 0$

위의 연립방정식을 풀면 $a=\frac{1}{7},\;b=\frac{3}{7}$ 이다.

(2) 확률변수 X가 취하는 값을 구해보면 다음과 같다.

$$1+1=2$$
, $1+a=\frac{8}{7}$, $1+b=\frac{10}{7}$, $a+a=\frac{2}{7}$, $a+b=\frac{4}{7}$, $b+b=\frac{6}{7}$

선택할 수 있는 경우는 모두 9가지이고, 두 원소가 동일한 경우는 한 번, 서로 다른 두 원소는 두 번씩 선택되므로 확률변수 X의 확률분포를 표로 나타내면 다음과 같다.

X	$\frac{2}{7}$	$\frac{4}{7}$	$\frac{6}{7}$	$\frac{8}{7}$	$\frac{10}{7}$	2	합계
P(X=x)	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{2}{9}$	$\frac{1}{9}$	1

이로부터 확률변수 X의 기댓값은 다음과 같다.

$$E(X) = \left(2 + \frac{2}{7} + \frac{6}{7}\right) \frac{1}{9} + \left(\frac{8}{7} + \frac{10}{7} + \frac{4}{7}\right) \frac{2}{9}$$
$$= \frac{22}{63} + \frac{44}{63} = \frac{66}{63} = \frac{22}{21}$$

[문항카드 2]

1. 일반정보

유형	■ 논술고사 □ 면접 및 구술고사		
전형명	논술우수자전형		
해당 대학의 계열(과목) / 문항번호	자연계열 / 1교시 2번		
출제 범위	수학과 교육과정 과목명 수학 I, 수학 II, 미적분		
호세 러지	핵심개념 및 용어 극값, 변곡점, 최댓값과 최솟값, 로그, 부분적분법		
예상 소요 시간	60분 / 전체 120분		

2. 문항 및 제시문

[문제 2] (50점) 다음 제시문을 읽고 문항별로 풀이와 함께 답하시오.

1. 함수의 극대와 극소의 판정

함수 f(x)가 미분가능하고 f'(a)=0일 때, x=a의 좌우에서 f'(x)의 부호가 양에서 음으로 바뀌면 f(x)는 x=a에서 극대이고 극댓값 f(a)를 갖는다. 음에서 양으로 바뀌면 f(x)는 x=a에서 극소이고 극솟값 f(a)를 갖는다.

2. 로그의 밑의 변환

a > 0, $a \ne 1$, b > 0, c > 0, $c \ne 1$ \bigcirc \bigcirc

$$\log_a b = \frac{\log_c b}{\log_c a}$$

3. 변곡점의 판정

연속인 이계도함수를 갖는 함수 f(x)에서 f''(a)=0이고, x=a의 좌우에서 f''(x)의 부호가 바뀌면 점 (a,f(a))는 곡선 y=f(x)의 변곡점이다.

4. 치환적분법을 이용한 정적분

닫힌구간 [a,b]에서 연속인 함수 f(x)에 대하여 미분가능한 함수 x=g(t)의 도함수 g'(t)가 $a=g(\alpha),\ b=g(\beta)$ 일 때 α,β 를 포함하는 구간에서 연속이면

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(g(t))g'(t) dt$$

5. 부분적분법을 이용한 정적분

미분가능한 두 함수 f(x), g(x)에 대하여 f'(x), g'(x)가 닫힌구간 [a,b]에서 연속일 때

$$\int_{a}^{b} f(x)g'(x) dx = \left[f(x)g(x) \right]_{a}^{b} - \int_{a}^{b} f'(x)g(x) dx$$

- [1] a는 실수이고 $0 \le x \le 1$ 에서 함수 $f(x) = -x^3 + \frac{3}{2}ax^2 a$ 의 최댓값을 g(a)라 할 때, 물음에 답하시 오.
 - (1) 함수 q(a)를 구하시오. [10점]
 - (2) 함수 q(a)의 최솟값을 구하시오. [8점]
- [2] 함수 $f(x) = \frac{\ln x}{r}$ 에 대하여 물음에 답하시오.
 - (1) 함수 f(x)는 x = a에서 극대이고, 곡선 y = f(x)의 변곡점이 점 (b, f(b))일 때, 상수 a, b를 구하시오. [6점]
 - (2) 다음 이차방정식의 근을 구하시오. (단, a, b는 (1)에서 구한 상수) [6점]

$$\left(\int_{1}^{b} f(t) dt\right) x^{2} - \frac{1}{2}x - \frac{5}{4} \int_{a}^{b} \frac{f(t)}{\ln t} dt = 0$$

- (3) 함수 f(x)를 이용하여 $\log_2 3$ 과 $\sqrt{1.5}$ 의 대소를 비교하시오. [11점]
- (4) $n \geq 2$ 인 자연수 n에 대하여 $a_n = \int_{e^{\frac{1}{1-n}}}^1 |x^{-n} \ln x| \, dx$ 일 때, $\sum_{n=2}^{2021} \sqrt{a_n \, a_{n+1}}$ 을 구하시오. [9점]

3. 출제 의도

- [1] 함수의 증가와 감소, 극대와 극소를 판정하고 설명할 수 있는 능력을 평가한다. 그리고 함수의 그래프의 개형을 이용하여 함수의 최솟값을 계산하는 능력을 평가한다
- [2] 함수의 극값과 변곡점을 구하는 과정의 판단과 이와 연관된 적분과 이차방정식의 계산 능력을 판단한
- 다. 함수를 이용하여 대소를 비교할 수 있는 응용 문제를 해결하는 과정을 설명할 수 있는 능력을 판단한다.

4. 출제 근거

1. 교육과정 근거

문항 및	관련 성취기준	
제시문1	교육과정	[수학II]-(2) 미분-3 도함수의 활용
세시군!	성취기준	[12수학표02-08] 함수의 증가와 감소, 극대와 극소를 판정하고 설명할 수 있다.
제시문2	교육과정	[수학 I]-(1) 지수함수와 로그함수[1] 지수와 로그
세시군2	성취기준	[12수학 I 01-04] 로그의 뜻을 알고, 그 성질을 이해한다.
제시문3	교육과정	[미적분]-(2) 미분법-③ 도함수의 활용
세시正3	성취기준	[12미적02-12] 함수의 그래프의 개형을 그릴 수 있다.
제시문4	교육과정	[미적분]-(3) 적분법-① 여러 가지 적분법
세시군4	성취기준	[12미적03-01] 치환적분법을 이해하고, 이를 활용할 수 있다.
ᅰᅬᄆᇀ	교육과정	[미적분]-(3) 적분법-[1] 여러 가지 적분법
제시문5	성취기준	[12미적03-02] 부분적분법을 이해하고, 이를 활용할 수 있다.

문항	교육과정	[수학II] - (2) 미분 - ③ 도함수의 활용
1	성취기준	[12수학Ⅲ02-08] 함수의 증가와 감소, 극대와 극소를 판정하고 설명할 수 있다.
문항	교육과정	[수학II] - (2) 미분 - ③ 도함수의 활용
[1](2)	성취기준	[12수학Ⅱ02-09] 함수의 그래프의 개형을 그릴 수 있다.
문항	교육과정	[미적분] - (2) 미분법 - ① 여러 가지 함수의 미분 ② 여러 가지 미분법 ③ 도함수의 활용
[2-(1)	성취기준	[12미적02-02] 지수함수와 로그함수를 미분할 수 있다. [12미적02-06] 함수의 몫을 미분할 수 있다. [12미적02-12] 함수의 그래프의 개형을 그릴 수 있다.
문항	교육과정	[미적분]-(3) 적분법-① 여러 가지 적분법
2	성취기준	[12미적03-01] 치환적분법을 이해하고, 이를 활용할 수 있다.
문항	교육과정	[미적분] - (2) 미분법 - ③ 도함수의 활용
문 8 [2](3)	성취기준	[12미적02-12] 함수의 그래프의 개형을 그릴 수 있다. [12미적02-13] 방정식과 부등식에 대한 문제를 해결할 수 있다.
문항	교육과정	[미적분]-(3) 적분법-① 여러 가지 적분법 [수학 I] - (3) 수열 - ② 수열의 합
[2](4)	성취기준	[12미적03-02] 부분적분법을 이해하고, 이를 활용할 수 있다. [12수학 I 03-04] ∑의 뜻을 알고, 그 성질을 이해하고, 이를 활용할 수 있다.

^{*:} 교육과학기술부 고시 제 2015-74호 [별책 8] "수학과 교육과정"

2. 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
	수학	박교식 외	동아출판(주)	2020	28,127
고등학교 교과서	수학 ॥	류희찬 외	㈜천재교과서	2020	83, 92
	미적분	이준열 외	㈜천재교육	2020	61, 112, 118, 147, 155,
기타					

5. 문항 해설

로그함수, 미분, 적분 등의 개념은 넓은 분야에서 유용하게 활용되고 있는 가장 기본적인 수학적 개념들이다. 이러한 개념들을 이해하고 다음과 같은 과정을 통해 해결할 수 있는 문항이다.

- [1] (1) 주어진 함수의 증가와 감소, 극대와 극소를 판정하여 함수 g(a)를 구하는 문항이다.
- (2) 함수의 그래프의 개형을 이용하여 함수의 최솟값을 구하는 문항이다.
- [2] (1) 주어진 함수의 도함수를 차례로 계산하고 극값, 변곡점의 판정을 적용하여 해결할 수 있다.
- (2) 치환적분법을 이용하여 이차방정식의 계수를 계산하고 이차방정식의 근을 구할 수 있는 문항이다.
- (3) 로그의 성질을 사용하여 대소 비교 가능한 형태로 바꾼 다음 주어진 함수의 그래프 개형을 이용하여 해결할 수 있다.
- (4) 부분적분법을 이용하여 적분을 계산하고 수열의 유한 합을 구해서 해결할 수 있다.

6. 채점 기준

하위 문항	채점 기준	배점
	$a \leq 0$ 일 때 $g(a) = -a$ 를 구했으면	3
1	$0 < a < 1$ 일 때 $g\left(a\right) = \frac{a^3}{2} - a$ 를 구했으면	4
	$a \geq 1$ 일 때 $g\left(a\right) = \frac{a}{2} - 1$ 을 구했으면	3
	함수 $g\left(a\right)$ 는 $0\leq a\leq 1$ 에서 최솟값을 가진다는 것을 설명했으면	2
[1](2)	함수가 최솟값을 가지는 점 $a=\frac{\sqrt{6}}{3}$ 을 구했으면	4
	최솟값 $-\frac{2\sqrt{6}}{9}$ 을 구했으면	2
	f'(x) = 0에서 $x = e$ 을 구하고 극대임을 설명했으면	3
[2](1)	$f''(x)=0$ 에서 $x=e^{ frac{3}{2}}$ 을 구하고 변곡점임을 설명했으면	3
	$\int_{1}^{b} f(t) dt = \int_{1}^{e^{\frac{3}{2}}} \frac{\ln t}{t} dt = \int_{0}^{\frac{3}{2}} s ds = \left[\frac{s^{2}}{2}\right]_{0}^{\frac{3}{2}} = \frac{9}{8}$ 을 구했으면	2
2	$\int_{a}^{b} \frac{f(t)}{\ln t} dt = \int_{e}^{e^{\frac{3}{2}}} \frac{1}{t} dt = \left[\ln t \right]_{e}^{e^{\frac{3}{2}}} = \frac{1}{2}$	2
	이차방정식의 근은 $x=-\frac{5}{9},\ 1$	2
	$\log_2 3 - \sqrt{1.5} = \frac{\ln 3}{\ln 2} - \frac{\sqrt{3}}{\sqrt{2}}$ 을 구했으면	3
[2](3)	$\frac{\ln 3}{\ln 2} - \frac{\sqrt{3}}{\sqrt{2}} = \frac{2\sqrt{3}}{\ln 2} \left(\frac{\ln \sqrt{3}}{\sqrt{3}} - \frac{\ln \sqrt{2}}{\sqrt{2}} \right)$ 을 구했으면	4
	$\sqrt{2} < \sqrt{3} < e$ 이므로 증감표에 의해 $f(\sqrt{3}) - f(\sqrt{2}) > 0$ 을 구했으면	4
	닫힌구간 $\left[e^{rac{1}{1-n}},\ 1 ight]$ 에서 $x^{-n}\ln x < 0$ 을 보였으면	2
[2](4)	$a_n = \int_{e^{\frac{1}{1-n}}}^{1} x^{-n} \ln x dx = \frac{1}{(n-1)^2}$ 을 보였으면	4
	$\sum_{n=2}^{2021} \sqrt{a_n a_{n+1}} = \sum_{n=2}^{2021} \frac{1}{(n-1)n} = \sum_{n=2}^{2021} \left(\frac{1}{n-1} - \frac{1}{n}\right) = \frac{2020}{2021}$ 을 보였으면	3

7. 예시 답안

[1]

(1)
$$f'(x) = -3x^2 + 3ax = -3x(x-a)$$

(i)
$$a \le 0$$
이면 $0 \le x \le 1$ 에서 $f'(x) \le 0$ 이다. 따라서 $g(a) = f(0) = -a$ 이다.

x	0	•••	a	•••	1
f'(x)		+	0	_	
f(x)	- a	/	극대		$\frac{a}{2}-1$

따라서
$$g\left(a\right)=f\left(a\right)=\dfrac{a^{3}}{2}-a$$
이다.

(iii)
$$a\geq 1$$
 이면 $0\leq x\leq 1$ 에서 $f^{\,\prime}(x)\geq 0$ 이다. 따라서 $g\left(a\right)=f\left(1\right)=rac{a}{2}-1$ 이다.

(i), (ii), (iii)에 의하여 함수
$$g(a)= \begin{cases} \displaystyle \frac{-a}{a^3}-a & (a\leq 0)\\ \displaystyle \frac{a^3}{2}-a & (0< a< 1)\\ \displaystyle \frac{a}{2}-1 & (a\geq 1) \end{cases}$$
 이다.

(2) 함수 $g\left(a\right)$ 는 연속함수이고, $a\leq0$ 에서 감소하고 $a\geq1$ 에서 증가하므로 $0\leq a\leq1$ 에서 최솟값을 갖는다.

$$g\left(a
ight) = rac{a^{3}}{2} - a ext{는 } 0 < a < 1$$
 에서 미분가능하고 $g'(a) = rac{3}{2}a^{2} - 1 = 0$ 에서 $a = rac{\sqrt{6}}{3}$ 이다.

a	0	•••	$\frac{\sqrt{6}}{3}$	•••	1
g'(a)		_	0	+	
g(a)	0	7	극소	1	$-\frac{1}{2}$

위의 증감표에 의해 함수
$$g\left(a\right)$$
의 최숙값은 $g\left(\dfrac{\sqrt{6}}{3}\right) = \dfrac{1}{2} \cdot \dfrac{2}{3} \cdot \dfrac{\sqrt{6}}{3} - \dfrac{\sqrt{6}}{3} = -\dfrac{2\sqrt{6}}{9}$ 이다.

[2]

(1)
$$f(x)=\frac{\ln x}{x}$$
, $f'(x)=\frac{1-\ln x}{x^2}$ 이므로 $f'(x)=0$ 에서 $x=e$

$$f''(x) = \frac{-x - 2x(1 - \ln x)}{x^4} = -\frac{3 - 2\ln x}{x^3}$$
 이므로 $f''(x) = 0$ 에서 $x = e^{\frac{3}{2}}$

x	•••	e	•••	$e^{rac{3}{2}}$	•••
f'(x)	+	0	_	_	_
$f^{\prime\prime}(x)$	_	+	-	0	+
f(x)	7	극대	7	변곡점	,

증감표에 의해서 함수 f(x)는 x=e에서 극대이고, 변곡점은 $\left(e^{\frac{3}{2}},f\left(e^{\frac{3}{2}}\right)\right)$ 이다. 따라서 a=e , $b=e^{\frac{3}{2}}$ 이다.

(2) 정적분
$$\int_{1}^{b} f(t) dt$$
에서 $\ln t = s$ 로 치환하면

$$\begin{split} &\int_{1}^{b} f(t) \, dt = \int_{1}^{e^{\frac{3}{2}}} \frac{\ln t}{t} \, dt = \int_{0}^{\frac{3}{2}} s \, ds = \left[\frac{s^{2}}{2} \right]_{0}^{\frac{3}{2}} = \frac{9}{8} \\ &\int_{a}^{b} \frac{f(t)}{\ln t} \, dt = \int_{e}^{e^{\frac{3}{2}}} \frac{1}{t} \, dt = \left[\ln |t| \right]_{e}^{e^{\frac{3}{2}}} = \frac{1}{2} \\ &\text{이로부터 } \frac{9}{8} x^{2} - \frac{1}{2} x - \frac{5}{8} = \frac{1}{8} (9x^{2} - 4x - 5) = \frac{1}{8} (x - 1)(9x + 5) = 0 \\ &\text{따라서 이차방정식의 금은 } x = -\frac{5}{9}, 1 \end{split}$$

$$(3) \ \log_2 3 - \sqrt{1.5} = \frac{\ln 3}{\ln 2} - \frac{\sqrt{3}}{\sqrt{2}} = \frac{2\sqrt{3}}{\ln 2} \left(\frac{\ln \sqrt{3}}{\sqrt{3}} - \frac{\ln \sqrt{2}}{\sqrt{2}} \right)$$
이다. $\frac{2\sqrt{3}}{\ln 2} > 0$ 이므로 대소의 변화는 없다.

(1) 로부터 다음 증감표를 얻는다

x	•••	e	
f'(x)	+	0	_
f(x)	1	$\frac{1}{e}$	¥

$$\sqrt{2} < \sqrt{3} < e$$
이므로 증감표에 의해 $f(\sqrt{3}) - f(\sqrt{2}) > 0$ 이다.

$$f(\sqrt{3}) - f(\sqrt{2}) = \frac{\ln\sqrt{3}}{\sqrt{3}} - \frac{\ln\sqrt{2}}{\sqrt{2}} = \frac{\ln 2}{2\sqrt{3}} \left(\log_2 3 - \sqrt{1.5}\right) > 0$$
이므로

따라서 $\log_2 3 > \sqrt{1.5}$ 이다.

(4) 닫힌구간 $\left[e^{rac{1}{1-n}},\ 1
ight]$ 에서 $x^{-n}\ln x < 0$, 부분적분법을 이용한 정적분의 값을 구하면 다음과 같다.

$$a_n = \int_{e^{\frac{1}{1-n}}}^{1} |x^{-n} \ln x| dx = -\int_{e^{\frac{1}{1-n}}}^{1} x^{-n} \ln x dx = -\left[\frac{1}{1-n} x^{1-n} \ln x\right]_{e^{\frac{1}{1-n}}}^{1} + \frac{1}{1-n} \int_{e^{\frac{1}{1-n}}}^{1} x^{-n} dx$$

$$= \frac{e}{(n-1)^2} + \left[\frac{1}{(n-1)^2} x^{1-n}\right]_{e^{\frac{1}{1-n}}}^{1} = \frac{1}{(n-1)^2}$$

따라서

$$\sum_{n=2}^{2021} \sqrt{a_n \, a_{n+1}} = \sum_{n=2}^{2021} \frac{1}{(n-1)n} = \sum_{n=2}^{2021} \left(\frac{1}{n-1} - \frac{1}{n}\right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \cdots - \frac{1}{2021} = \frac{2020}{2021}$$

[문항카드 3]

1. 일반정보

유형	■ 논술고사 □ 면접 및 구술고사		
전형명	논술우수자전형		
해당 대학의 계열(과목) / 문항번호	항번호 자연계열 / 2교시 1번		
ᄎᆀᄖᅁ	수학과 교육과정 과목명 수학, 수학 1, 수학 11, 미적분		
출제 범위	핵심개념 및 용어 삼각함수, 이차방정식, 도형의 넓이		
예상 소요 시간	60분 / 전체 120분		

2. 문항 및 제시문

[문제 1] (50점) 다음 제시문을 읽고 문항별로 풀이와 함께 답하시오.

1. 사인법칙

삼각형 ABC의 외접원의 반지름의 길이를 R라고 하면

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

2. 코사인법칙

삼각형 ABC에서

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

 $b^{2} = c^{2} + a^{2} - 2ca \cos B$
 $c^{2} = a^{2} + b^{2} - 2ab \cos C$

3. 곡선과 y축 사이의 넓이

함수 h(y)가 닫힌구간 [c,d]에서 연속일 때, 곡선 x=h(y)와 y축 및 두 직선 $y=c,\,y=d$ 로 둘러싸인 도형의 넓이 S는 다음과 같다.

$$S = \int_{c}^{d} |h(y)| \, dy$$

4. 이차방정식의 근의 판별

계수가 실수인 이차방정식 $ax^2+bx+c=0$ $(a\neq 0)$ 에서 $D=b^2-4ac$ 라고 할 때, D>0이면 서로 다른 두 실근을 갖고, 서로 다른 두 실근을 가지면 D>0이다. D=0이면 중근을 갖고, 중근을 가지면 D=0이다.

D < 0이면 서로 다른 두 허근을 갖고, 서로 다른 두 허근을 가지면 D < 0이다.

[1] 함수 $f(x) = \sin \pi x$ 와 $g(x) = \cos \pi x$ 에 대하여 전체집합 U의 두 부분집합 A, B를 다음과 같이 정의할 때, 물음에 답하시오.

$$U = \left\{ x \mid x = \frac{n}{24}, \ 0 \le n \le 24 인 \ \ \ \ \, \right\}$$

$$A = \left\{ x \mid f\left(4x\right) = 0, \ 0 \le x \le 1 \right\}, \ B = \left\{ x \mid g\left(6x\right) = 0, \ 0 \le x \le 1 \right\}$$

- (1) $A \cup B$ 과 $A \cap B$ 을 각각 구하시오. [5점]
- (2) $A^C \cap B^C$ 의 원소의 개수를 구하시오.(단, A^C , B^C 는 각각 U에 대한 집합 A, B의 여집합) [5점]
- [2] 삼각형 ABC에 대하여 물음에 답하시오.
 - (1) A가 직각일 때, $\sin A + \sin B + \sin C$ 의 최댓값을 구하시오. [9점]
 - (2) 다음 식의 값을 구하시오. [9점]

 $\sin^2 A + \sin^2 B + \sin^2 C - 2\sin B \sin C \cos A - 2\sin C \sin A \cos B - 2\sin A \sin B \cos C$

- [3] 무리함수 $f(x) = \sqrt{-(x+1)} 1$ 과 함수 q(x) = kx에 대하여 물음에 답하시오. (단, k는 상수)
 - (1) 곡선 y = f(x) 위의 두 점 P(a, b), Q(c, d)를 지나는 직선에 수직인 직선의 기울기를 구하시오. (단, b + d = 1, $a < c \le -1$) [5점]
 - (2) 곡선 y = f(x)와 직선 y = q(x)가 만나도록 하는 k의 범위를 구하시오. [8점]
 - (3) 곡선 y = f(x)와 직선 y = g(x)가 접할 때, 곡선 y = f(x)와 두 직선 y = g(x), y = x로 둘러싸 인 영역의 넓이를 구하시오. [9점]

3. 출제 의도

- [1] 집합의 개념을 이해하고 표현하는 능력과 집합의 연산을 할 수 있는 능력을 평가한다.
- [2] 삼각함수의 뜻을 알고 사인법칙과 코사인법칙을 활용하여 함수의 극대와 극소를 설명할 수 있는지 평가한다.
- [3] 무리함수를 이해하고 식을 변형하여 이차함수의 그래프와 직선의 위치 관계를 이해하고 곡선으로 둘러싸인 도형의 넓이를 구할 수 있는지 평가한다.

4. 출제 근거

1. 교육과정 근거

문항 및	제시문	관련 성취기준
TILLEA	교육과정	[수학1] - (2) 삼각함수 - ① 삼각함수
제시문1	성취기준	[12수학 I 02-03] 사인법칙과 코사인법칙을 이해하고, 이를 활용할 수 있다.
제시문2	교육과정	[수학1] - (2) 삼각함수 - ① 삼각함수
게시正2	성취기준	[12수학 I 02-03] 사인법칙과 코사인법칙을 이해하고, 이를 활용할 수 있다.
제시문3	교육과정	[수학II] - (3) 적분 - ③ 정적분의 활용
세시군3	성취기준	[12수학Ⅱ03-05] 곡선으로 둘러싸인 도형의 넓이를 구할 수 있다.
제시문4	교육과정	[수학] - (1) 문자와 식 - ④ 복소수와 이차방정식
세시군4	성취기준	[10수학01-07] 이차방정식에서 판별식의 의미를 이해하고 이를 설명할 수 있다.
문항	교육과정	[수학] - (3) 수와 연산 - ① 집합
1	성취기준	[10수학03-01] 집합의 개념을 이해하고, 집합을 표현할 수 있다.
문항	교육과정	[수학] - (3) 수와 연산 - ① 집합
[1](2)	성취기준	[10수학03-03] 집합의 연산을 할 수 있다.
문항	교육과정	[수학 I] - (2) 삼각함수 - ① 삼각함수 [수학 II] - (2) 미분 - ③ 도함수의 활용
표명 [2](1)	성취기준	[12수학 I 02-02] 삼각함수의 뜻을 알고, 사인함수, 코사인함수, 탄젠트함수의 그래프를 그릴 수 있다. [12수학II02-08] 함수의 증가와 감소, 극대와 극소를 판정하고 설명할 수 있다.
문항	교육과정	[수학1] - (2) 삼각함수 - ① 삼각함수
2	성취기준	[12수학 I 02-03] 사인법칙과 코사인법칙을 이해하고, 이를 활용할 수 있다.
ㅁᇵ	교육과정	[수학] - (4) 함수 - ② 유리함수와 무리함수
문항 [3](1)	성취기준	[10수학04-05] 무리함수 $y = \sqrt{ax+b} + c$ 의 그래프를 그릴 수 있고, 그 그래프의 성질을 이해한다.
문항	교육과정	[수학] - (1) 문자와 식- ⑤ 이차방정식과 이차함수
[3](2)	성취기준	[10수학01-10] 이차함수의 그래프와 직선의 위치 관계를 이해한다.
문항	교육과정	[수학II] - (3) 적분 - ③ 정적분의 활용
3	성취기준	[12수학Ⅱ03-05] 곡선으로 둘러싸인 도형의 넓이를 구할 수 있다.

^{*:} 교육부 고시 제2015-74호 [별책 8] "수학과 교육과정"

2. 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
고등학교 교과서	수학	류희찬 외	천재교과서	2020	56, 66
	수학	박교식 외	동아출판	2020	87, 90
	미적분	류희찬 외	천재교과서	2020	184
	수학 ॥	박교식 외	동아출판	2020	86
기타					

5. 문항 해설

- [1] (1) 집합의 개념을 이해하고 두 집합의 합집합과 교집합을 구하는 문항이다.
- (2) 집합의 연산을 하고 집합의 원소의 개수를 구하는 문항이다.
- [2] (1) 사인함수와 코사인함수의 관계를 이용하고 함수의 극대를 구하는 문항이다.
- (2) 사인법칙과 코사인법칙을 활용하여 식의 값을 구하는 문항이다.
- [3] (1) 무리함수를 이해하고 주어진 직선과 수직인 직선의 기울기를 구하는 문항이다.
- (2) 이차함수의 판별식을 활용하여 이차함수와 직선의 관계를 알아내는 문항이다.
- (3) 곡선으로 주어진 영역과 넓이를 계산하는 문항이다.

6. 채점 기준

하위 문항	채점 기준	배점
1	A와 B 를 구했으면	2
1	$A \cup B$ 와 $A \cap B$ 를 구했으면	3
[1](2)	$A^{\ C}\cap B^{\ C}$ 을 구하거나 $(A\cup B)^{\ C}$ 과의 관계를 표현했으면	2
[1](2)	원소의 개수 16을 구했으면	3
	$B+C=rac{\pi}{2}$ 을 이용하여 $1+\sin B+\sqrt{1-\sin^2 B}$ 을 도출하였으면	3
[2](1)	$\sin\!B = rac{\sqrt{2}}{2}$ 에서 최댓값을 가짐을 도출하였으면	3
	최댓값 $1+\sqrt{2}$ 를 구했으면	3
[2]/4)	$\frac{1}{4R^2} (a^2 + b^2 + c^2 - 2bc\cos A - 2ca\cos B - 2ab\cos C)$ 을 얻었으면	5
[2](1)	$\frac{1}{4R^2}(a^2+b^2+c^2+a^2-b^2-c^2+b^2-c^2-a^2+c^2-a^2-b^2)=0$ 을 얻었으면	4
[2](4)	수직인 직선의 기울기의 식 $-\frac{c-a}{d-b}$ 을 얻고 $d-b \neq 0$ 임을 언급하였으면	2
[3](1)	$-\frac{c-a}{d-b} = \frac{(d+1)^2 - (b+1)^2}{d-b} = d+b+2 = 3$ 을 얻었으면	3
	주어진 두 식을 연립하여 $k^2x^2 + (2k+1)x + 2 = 0$ 을 얻었으면	3
[3](2)	$\dfrac{1-\sqrt{2}}{2} \leq k \leq 1$ 을 구했으면	5

하위 문항	채점 기준	배점
	넓이를 정적분으로 표현하기 위한 위 끝과 아래 끝을 올바로 구했으면	3
3	넓이를 정적분으로 올바로 표현하였으면	3
	$\frac{5}{6} + \frac{2}{3}\sqrt{2}$ 을 구했으면	3

7. 예시 답안

[1]

(1)
$$f\left(4x\right) = \sin 4\pi x = 0$$
 에서 $0 \le x \le 1$ 이므로 $x = 0, \ \frac{1}{4}, \ \frac{1}{2}, \ \frac{3}{4}, \ 1$ 이고,
$$g\left(6x\right) = \cos 6\pi x = 0$$
 에서 $0 \le x \le 1$ 이므로 $x = \frac{1}{12}, \ \frac{1}{4}, \ \frac{5}{12}, \ \frac{7}{12}, \ \frac{3}{4}, \ \frac{11}{12}$ 이다.
$$A = \left\{0, \ \frac{1}{4}, \ \frac{1}{2}, \ \frac{3}{4}, \ 1\right\}, \ B = \left\{\frac{1}{12}, \ \frac{1}{4}, \ \frac{5}{12}, \ \frac{7}{12}, \ \frac{3}{4}, \ \frac{11}{12}\right\}$$
이므로 A 와 B 의 합집합과 교집합은 각각
$$A \cup B = \left\{0, \ \frac{1}{12}, \ \frac{1}{4}, \ \frac{5}{12}, \ \frac{1}{2}, \ \frac{7}{12}, \ \frac{3}{4}, \ \frac{11}{12}, 1\right\}, \ A \cap B = \left\{\frac{1}{4}, \ \frac{3}{4}\right\}$$
 이다.

(2) 드 모르간의 법칙에 의하여
$$A^C \cap B^C = (A \cup B)^C$$
이고, $(A \cup B)^C = U - (A \cup B)$ 이다.
$$n(U) = 25, \ n(A \cup B) = 9$$
이고 $n(U) = n(A \cup B) + n((A \cup B)^C)$ 이므로
$$n((A \cup B)^C) = n(U) - n(A \cup B) = 25 - 9 = 16$$

[2]

(1)
$$A = \frac{\pi}{2}$$
 이므로, $B + C = \frac{\pi}{2}$ 이다.

$$\begin{split} \sin A + \sin B + \sin C &= 1 + \sin B + \sin \left(\frac{\pi}{2} - B\right) \\ &= 1 + \sin B + \cos B \\ &= 1 + \sin B + \sqrt{1 - \sin^2 B} \qquad \cdots \qquad \text{\mathbb{O}} \quad (\because \cos B > 0) \end{split}$$

$$\sin B = x (0 < x < 1)$$
라 하면

식 ①의 최댓값은
$$f(x) = 1 + x + \sqrt{1 - x^2}$$
 의 최댓값이다.

$$f'(x) = 1 - \frac{x}{\sqrt{1 - x^2}} = 0$$
으로부터 $x = \frac{\sqrt{2}}{2}$

x		$\frac{\sqrt{2}}{2}$	•••
f'(x)	+	0	_
f(x)	1	극대	7

그러므로
$$0 < x < 1$$
에서 $f(x)$ 의 최댓값은 $f\left(\frac{\sqrt{2}}{2}\right) = 1 + \sqrt{2}$ 이므로

식 ①의 최댓값은
$$1+\sqrt{2}$$

(2) 삼각형 ABC의 외접원의 반지름을 R라고 할 때,

사인법칙으로부터
$$\sin A = \frac{a}{2R}$$
, $\sin B = \frac{b}{2R}$, $\sin C = \frac{c}{2R}$ ····· ②

문제에서 주어진 식에 ②를 대입하면 $\frac{1}{4R^2}(a^2+b^2+c^2-2bc\cos A-2ca\cos B-2ab\cos C)$

코사인법칙으로부터 주어진 식의 값은

$$\frac{1}{4R^2}(a^2+b^2+c^2+a^2-b^2-c^2+b^2-c^2-a^2+c^2-a^2-b^2)=0$$

[3]

(1) 두 점 $P,\,Q$ 를 지나는 직선의 기울기는 $\dfrac{d-b}{c-a}$ 이므로 이 직선과 수직인 직선의 기울기는 $-\dfrac{c-a}{d-b}$

(여기서 $d-b\neq 0$ 인데 왜냐하면, 만약 d=b이라면 $\sqrt{-(c+1)}-1=\sqrt{-(a+1)}-1$ 이므로 c=a가 되지만 문제의 조건에서 a< c 라고 했기 때문이다.)

점 $P,\ Q$ 가 곡선 y=f(x) 위의 점이므로 $(b+1)^2=-(a+1)$ 이고 $(d+1)^2=-(c+1)$

두 식의 차는 $(b+1)^2 - (d+1)^2 = c - a$ 이므로

$$-\frac{c-a}{d-b} = \frac{(d+1)^2 - (b+1)^2}{d-b} = d+b+2 = 3$$

(2) 직선 y=g(x)가 (-1,-1)을 지날 때 k=1

곡선 $y=\sqrt{-\left(x+1
ight)}-1$ 와 직선 y=kx가 접할 때

k값을 구하기 위하여 두 식을 연립하면 $kx+1=\sqrt{-\left(x+1
ight)}$

양변을 제곱하여 x에 대한 이차방정식 꼴로 정리하면

$$k^2x^2 + (2k+1)x + 2 = 0 \cdots$$

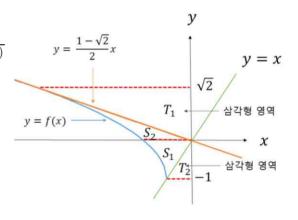
판별식 $D = (2k+1)^2 - 8k^2 = 0$ 으로부터

$$k = \frac{1 \pm \sqrt{2}}{2}$$

오른쪽 그림과 같이 두 그래프가 만날 때 $k \leq 1$ 이므로

$$k = \frac{1 - \sqrt{2}}{2}$$

그러므로 구하는 k값의 범위는 $\frac{1-\sqrt{2}}{2} \le k \le 1$



(3) y = f(x)와 y = g(x)가 접할 때 $k = \frac{1 - \sqrt{2}}{2}$ 이고 식 ①의 판별식이 0이므로 접점의 x 좌표는

$$x = \frac{-(2k+1)}{2k^2} = \frac{-(2-\sqrt{2})}{(1-\sqrt{2})^2} = \frac{-2(2-\sqrt{2})}{3-2\sqrt{2}} = -2(2+\sqrt{2})$$

접점의 y 좌표는 $y = kx = \sqrt{2}$

$$y = f(x) = \sqrt{-(x+1)} - 1$$
 에서 x 를 y 에 대해 정리하면 $x = h(y) = -y^2 - 2y - 2y$

구하는 영역의 넓이 (위 그림의 S_1+S_2)는 곡선 y=f(x)와 y 축 및 두 직선 $y=-1,\ y=\sqrt{2}$ 로 둘러싸인 영역의 넓이 S와 삼각형 영역의 넓이 T(위 그림의 T_1+T_2)의 차와 같다.

$$S = \int_{-1}^{\sqrt{2}} |h(y)| \, dy = \int_{-1}^{\sqrt{2}} \left(y^2 + 2y + 2\right) \, dy = \left[\frac{y^3}{3} + y^2 + 2y\right]_{-1}^{\sqrt{2}} = \frac{10}{3} + \frac{8}{3} \sqrt{2}$$

$$T = \frac{1}{2} \cdot 2(2 + \sqrt{2}) \cdot \sqrt{2} + \frac{1}{2} \cdot 1 \cdot 1 = \frac{5}{2} + 2\sqrt{2}$$

$$S - T = \frac{5}{6} + \frac{2}{3} \sqrt{2}$$

[문항카드 4]

1. 일반정보

유형	■ 논술고사 □ 면접 및 구술고사		
전형명	논술우수자전형		
해당 대학의 계열(과목) / 문항번호 자연계열 / 2교시 2번		자연계열 / 2교시 2번	
출제 범위	수학과 교육과정 과목명	수학, 수학 II, 미적분, 확률과 통계	
출세 급기	핵심개념 및 용어 미분계수, 정적분, 이항정리		
예상 소요 시간	60분 / 전체 120분		

2. 문항 및 제시문

[문제 2] (50점) 다음 제시문을 읽고 문항별로 풀이와 함께 답하시오.

1. 이항정리

n이 자연수일 때

$$(a+b)^n = {}_{n}C_0a^n + {}_{n}C_1a^{n-1}b + \cdots + {}_{n}C_na^{n-r}b^r + \cdots + {}_{n}C_nb^n$$

2. 두 곡선 사이의 넓이

두 함수 f(x), g(x)가 닫힌구간 [a,b]에서 연속일 때, 두 곡선 y = f(x), y = g(x)와 두 직선 x = a, x = b로 둘러싸인 도형의 넓이 S는 다음과 같다.

$$S = \int_{a}^{b} |f(x) - g(x)| dx$$

[1] 다음 물음에 답하시오.

(1)
$$\sum_{i=0}^{5} ({}_{5}C_{i})^{2} = {}_{p}C_{q}$$
일 때, p 와 q 의 합을 구하시오. (단, $p \geq q \geq 0$) [6점]

- (2) 2021^{10} 을 3으로 나눈 나머지와 7로 나눈 나머지를 각각 구하시오. [7점]
- (3) (2)의 결과를 이용하여 2021^{10} 을 21로 나눈 나머지를 구하시오. [9점]
- [2] 모든 실수 x에 대하여 함수 h(x)의 함숫값은 다음과 같은 함수 f(x)의 값과 함수 g(x)의 값 중 크지 않은 값으로 정의한다.

$$f(x) = \begin{cases} (x-2)^2 & (x \ge 0) \\ 3 & (x < 0) \end{cases}$$
, $g(x) = ax + 1 \ (a = 상수)$

예를 들어 a=1일 때 f(3)=1, g(3)=4이고 f(3)< g(3)이므로 h(3)=1이다. 물음에 답하시오.

(1) a = 0일 때, 두 함수 y = h(x)와 $y = x^2$ 의 그래프로 둘러싸인 부분의 넓이를 구하시오. [9점]

- (2) 직선 y = g(x)가 함수 y = f(x)의 그래프와 접할 때, 직선 y = g(x)의 기울기를 구하시오. [7점]
- (3) 함수 h(x)가 미분가능하지 않은 점이 3개가 되도록 하는 a의 범위를 구하시오. [12점]

3. 출제 의도

- [1] 이항정리를 이해하고 이를 이용하여 문제를 해결할 수 있는 능력을 평가한다.
- [2] 주어진 조건을 만족하는 함수를 구하고 미분계수의 기하학적 의미를 이해하며 곡선으로 둘러싸인 도형의 넓이를 구할 수 있는지 평가한다.

4. 출제 근거

1. 교육과정 근거

문항 및	제시문	관련 성취 기준
제시문1	교육과정	[확률과 통계] - (1) 경우의 수 - ② 이항정리
세시正!	성취기준	[12확통01-03] 이항정리를 이해하고 이를 이용하여 문제를 해결할 수 있다.
테시므?	교육과정	[수학II] - (3) 적분 - ③ 정적분의 활용
제시문2	성취기준	[12수학Ⅱ03-05] 곡선으로 둘러싸인 도형의 넓이를 구할 수 있다.
문항	교육과정	[확률과 통계] - (1) 경우의 수 - ② 이항정리
1	성취기준	[12확통01-03] 이항정리를 이해하고 이를 이용하여 문제를 해결할 수 있다.
문항	교육과정	[확률과 통계] - (1) 경우의 수 - ② 이항정리
[1](2)	성취기준	[12확통01-03] 이항정리를 이해하고 이를 이용하여 문제를 해결할 수 있다.
문항	교육과정	[확률과 통계] - (1) 경우의 수 - ② 이항정리
[1](3)	성취기준	[12확통01-03] 이항정리를 이해하고 이를 이용하여 문제를 해결할 수 있다.
문항	교육과정	[수학II] - (3) 적분 - ③ 정적분의 활용
[2](1)	성취기준	[12수학Ⅱ03-05] 곡선으로 둘러싸인 도형의 넓이를 구할 수 있다.
문항	교육과정	[수학] - (1) 문자와 식- ⑤ 이차방정식과 이차함수
2	성취기준	[10수학01-10] 이차함수의 그래프와 직선의 위치 관계를 이해한다.
문항	교육과정	[수학 II] - (2) 미분 - <u>1</u> 미분계수
[2]-(3)	성취기준	[12수학표02-02] 미분계수의 기하적 의미를 이해한다.

2. 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
고등학교 교과서	확률과 통계	김원경 외	비상	2020	22
	미적분	류희찬 외	천재교과서	2020	185
,	수학	류희찬 외	천재교과서	2020	66

5. 문항 해설

- [1] (1) 이항정리를 이용하여 이항계수들의 관계를 파악하는 문항이다.
- (2) 이항정리를 이용하여 주어진 수의 나머지를 구하는 문항이다.
- (3) 주어진 조건을 정리하여 주어진 수의 나머지를 구하는 문항이다.
- [2] (1) 주어진 조건을 만족하는 함수를 찾고 곡선으로 주어진 영역과 넓이를 계산하는 문항이다.
- (2) 이차함수의 판별식을 활용하여 이차함수와 직선의 관계를 알아내는 문항이다.
- (3) 미분계수의 기하적 의미를 이해하고 조건을 만족하는 값의 범위를 구하는 문항이다.

6. 채점 기준

하위 문항	채점 기준	배점
1	올바른 논리로 $\sum_{i=0}^{5} ({}_{5}C_{i})^{2} = {}_{10}C_{5} \text{ 또는 } \sum_{i=0}^{5} ({}_{5}C_{i})^{2} = {}_{252}C_{1} \text{ 또는 } \sum_{i=0}^{5} ({}_{5}C_{i})^{2} = {}_{252}C_{251}$ 을 얻으면	3
	p+q=15 또는 $p+q=253$ 또는 $p+q=503$ 을 얻으면	3
[1](2)	올바른 논리로 2021^{10} 을 3 으로 나눈 나머지가 1 임을 보였으면	3
[1](2)	올바른 논리로 2021^{10} 을 7 으로 나눈 나머지가 2 임을 보였으면	4
[41(2)	올바른 논리로 (2)의 결과를 이용하고 있으면	4
[1](3)	올바른 논리로 2021^{10} 을 21 로 나눈 나머지가 16 임을 보였으면	5
	a=0일 때, 함수 $h(x)$ 를 얻었으면	4
[2](1)	$S = \int_{-1}^{1} (1 - x^2) dx = \frac{4}{3}$ 을 구했으면	5
	$D = (a+4)^2 - 12 = a^2 + 8a + 4 = 0$ 을 얻었으면	3
2	$a=-4+2\sqrt{3}$ 을 얻었으면	4
	$a \geq 0$ 일 때, $y = h(x)$ 가 미분가능하지 않은 점이 2개임을 보인 경우	3
[2](3)	$a<-4+2\sqrt{3}$ 일 때, $y=h(x)$ 가 미분가능하지 않은 점이 1개임을 보인 경우	3
	$-4+2\sqrt{3} < a < 0$ 일 때, $y = h(x)$ 가 미분가능하지 않은 점이 3개임을 보이면	6

7. 예시 답안

[1]

(1)
$$(1+x)^5(1+x)^5 = ({}_5C_0 + {}_5C_1x + \dots + {}_5C_5x^5)({}_5C_0 + {}_5C_1x + \dots + {}_5C_5x^5)$$
 on \mathcal{H}

$$x^5$$
의 계수는 ${}_5C_0 \cdot {}_5C_5 + {}_5C_1 \cdot {}_5C_4 + \cdots + {}_5C_5 \cdot {}_5C_0 \cdot \cdots$ ①

여기서
$${}_5{\rm C}_k = {}_5{\rm C}_{5-k}$$
 ($0 \le k \le 5$ 인 정수)이므로 식 ①을 다시 쓰면

$${}_{5}C_{0} \cdot {}_{5}C_{5} + {}_{5}C_{1} \cdot {}_{5}C_{4} + \cdots + {}_{5}C_{5} \cdot {}_{5}C_{0} = \sum_{i=0}^{5} ({}_{5}C_{i})^{2} \cdots$$
 ②

한편
$$(1+x)^{10} = {}_{10}\mathsf{C}_0 + {}_{10}\mathsf{C}_1x + \cdots + {}_{10}\mathsf{C}_{10}x^{10}$$
 에서 x^5 의 계수는 ${}_{10}\mathsf{C}_5$ ····· ③

$$(1+x)^{10}$$
과 $(1+x)^5(1+x)^5$ 에서 x^5 의 계수는 같다.

그러므로 ②와 ③으로부터

$$\sum_{i=0}^{5} ({}_{5}C_{i})^{2} = {}_{p}C_{q} = {}_{10}C_{5}$$

또한
$$\sum_{i=0}^{5} ({}_{5}\mathsf{C}_{i})^{2} = 252 \,\text{에서}_{252}\mathsf{C}_{1} = 252, \quad {}_{252}\mathsf{C}_{251} = 252 \,\text{이므로}$$

$$p+q=15$$
 또는 $p+q=253$ 또는 $p+q=503$

(2)
$$2021^{10} = (-1+3\cdot 674)^{10} = {}_{10}C_{0}(-1)^{10} + {}_{10}C_{1}(-1)^{9} \cdot (3\cdot 674) + \dots + {}_{10}C_{10}(3\cdot 674)^{10} \text{ OIDE}$$

$$2021^{10}$$
을 3 으로 나눈 나머지는 1

$$2021^{10} = (-2+7 \cdot 289)^{10} = {}_{10}\mathsf{C}_{0}(-2)^{10} + {}_{10}\mathsf{C}_{1}(-2)^{9} \cdot (7 \cdot 289) + \dots + {}_{10}\mathsf{C}_{10}(7 \cdot 289)^{10} \, \mathsf{OI므로}$$

 2021^{10} 을 7로 나눈 나머지는 $(-2)^{10} = 1024$ 를 7로 나눈 나머지와 같다.

$$1024 = 7 \cdot 146 + 2$$
이므로

(3) (2)로부터

$$2021^{10} = 3a + 1 (a 는 정수)$$

$$2021^{10} = 7b + 2 \ (b = 54)$$

위의 두 식으로부터
$$7b = 2021^{10} - 2 = (3a+1) - 2 = 3(a-1) + 2$$
 ····· ④

여기서 b를 3으로 나눈 나머지는 0, 1, 2 중 하나이다.

나머지가 0인 경우, 식 ④의 좌변과 우변을 3으로 나눈 나머지가 일치하지 않는다.

나머지가 1인 경우 7(3c+1)=3(7c+2)+1 (c는 정수)이므로 식 ④의 좌변과 우변을 3으로 나눈 나머지가 일 치하지 않는다.

그러므로 b = 3으로 나눈 나머지는 2이다. 즉, b = 3d + 2 (d는 정수)

식 ④로부터
$$2021^{10} = 7b + 2 = 7(3d + 2) + 2 = 21d + 16$$

그러므로 2021^{10} 을 21로 나눈 나머지는 16

[2]

(1) a=0일 때, g(x)=1이므로 y=f(x)의 그래프와 직선 y=1의 교점의 x 좌표를 구하자. x<0에서는 f(x)=3>1이고, $x\geq 0$ 에서는 $(x-2)^2=1$ 이므로 구하는 x=1,3이다.

함수
$$h(x)$$
의 정의로부터 $h(x) = \begin{cases} 1 & (x < 1) \\ (x-2)^2 & (1 \le x \le 3) \\ 1 & (x > 3) \end{cases}$

두 함수 $y=x^2$ 과 y=h(x)의 그래프의 교점을 구하면 $x \leq 1$ 에서 $x^2=1$ 이므로 x=-1.1이다.

구하는 넓이를 S라 하면 $S = \int_{-1}^{1} (1 - x^2) dx = \frac{4}{3}$ 이다.

- (2) 직선 y=ax+1이 곡선 y=f(x)와 접하는 경우는 $x\geq 0$ 에서 곡선 $y=(x-2)^2$ 과 접하는 경우이다. $x^2-(a+4)x+3=0$ 으로부터 $D=(a+4)^2-12=a^2+8a+4=0$ 이고 $a=-4\pm2\sqrt{3}$ 를 얻는다. $a=-4-2\sqrt{3}$ 일 때는 y=g(x)와 곡선 $y=(x-2)^2$ 이 x<0에서 접하는 경우이므로 제외한다. 따라서 $a=-4+2\sqrt{3}$ 이다.
- (3) 함수 h(x)를 이루는 두 함수에 대해, f(x)는 0을 제외한 모든 실수에서, g(x)는 모든 실수에서 미분 가능하므로, 함수 h(x)의 미분가능하지 않은 점은 두 함수 f(x)와 g(x)의 그래프의 교점일 수 있다. 두 함수 y=g(x)와 y=f(x)가 접하는 범위는 $x\geq 0$ 이다. 그때의 기울기는 (2)로부터 $a=-4+2\sqrt{3}$ 이다.
 - (i) a > 0인 경우

x < 0에서 두 함수 y = q(x)와 y = f(x) = 3은 교점이 없다.

 $x \ge 0$ 에서 두 함수 y = g(x)와 $y = f(x) = (x-2)^2$ 은 서로 다른 두 점에서 만난다. 접하지 않으므로 그두 점에서 기울기는 서로 다르다. 즉, 좌우 미분계수가 일치하지 않으므로 y = h(x)는 2개의 교점에서 미분가능하지 않다.

(ii) $-4+2\sqrt{3} < a < 0$ 인 경우

함수 y=g(x)는 x<0에서 직선 y=f(x)=3과 한 점에서 만나며, $x\geq 0$ 에서 함수 $y=f(x)=(x-2)^2$ 과 서로 다른 두 점에서 만난다. 따라서 y=h(x)가 미분가능하지 않은 점은 3개이다.

(iii) $a < -4 + 2\sqrt{3}$ 인 경우

함수 y=g(x)는 x<0에서 직선 y=f(x)=3과 한 점에서 만나며, $x\geq 0$ 에서 함수 $y=f(x)=(x-2)^2$ 과는 만나지 않는다. 따라서 y=h(x)가 미분가능하지 않은 점은 1개이다.

(i), (ii), (iii)으로부터 함수 y=h(x)가 미분가능하지 않은 점이 3개가 되게 하는 a의 범위는 $-4+2\sqrt{3} < a < 0$ 이다.

[문항카드 5]

1. 일반정보

유형	■ 논술고사 □ 면접 및 구술고사			
전형명	논술우수자전형			
해당 대학의 계열(과목) / 문항번호		자연계열 / 3교시 1번		
	수학과 교육과정 과목명	수학, 수학 1, 미적분, 확률과 통계		
출제 범위	핵심개념 및 용어	허근, 근과 계수의 관계, 코사인법칙, 확률변수, 정적분과 급수의 합 사이의 관계		
예상 소요 시간	60분 / 전체 120분			

2. 문항 및 제시문

[문제 1] (50점) 다음 제시문을 읽고 문항별로 풀이와 함께 답하시오.

1. 코사인법칙

삼각형 ABC에서

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$b^2 = c^2 + a^2 - 2ca\cos B$$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

2. 확률변수

어떤 시행에서 표본공간 S의 각 원소에 단 하나의 실수가 대응되는 함수를 확률변수라 하고, 확률변수 X가 어떤 값 x를 가질 확률을 기호로 다음과 같이 나타낸다.

$$P(X=x)$$

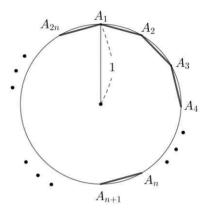
3. 정적분과 급수의 합 사이의 관계

함수 f(x)가 닫힌구간 [a,b]에서 연속일 때, 다음이 성립한다.

$$\lim_{n\to\infty} \sum_{k=1}^{n} f\left(a + \frac{k(b-a)}{n}\right) \frac{b-a}{n} = \int_{a}^{b} f(x)dx$$

- [1] 이차방정식 $x^2 (a+1)x + 2a + 1 = 0$ 의 한 허근을 ω 라고 할 때, 물음에 답하시오.(단, a는 실수)
 - (1) 두 복소수 α , β 의 켤레복소수 $\overline{\alpha}$, $\overline{\beta}$ 에 대하여 $\overline{\alpha\beta} = \overline{\alpha}\overline{\beta}$ 가 성립함을 보이시오. [6점]
 - (2) $\omega^4 \overline{\omega}^4 = 0$ 을 만족하는 실수 a의 값을 구하시오. [7점]
 - (3) $\omega^2 + \overline{\omega}^2 2\omega\overline{\omega} > -8$ 을 만족하는 실수 a의 범위를 구하시오. [6점]

- [2] 오른쪽 그림과 같이 반지름의 길이가 1 인 원에 내접하는 정2n 각 형 $A_1A_2\cdots A_{2n}$ 에서 임의의 두 꼭지점을 택하여 두 꼭지점 사이의 거리의 제곱을 확률변수 X_n 이라 하자. 물음에 답하시오. (단, $n\geq 2$ 인 자연수)
 - (1) 확률변수 X_3 의 확률분포를 표로 나타내고, 확률변수 X_3 의 기댓값 $E(X_3)$ 을 구하시오. [7점]
 - (2) 확률변수 X_4 의 기댓값 $E(X_4)$ 를 구하시오. [7점]
 - (3) 확률변수 X_n 의 기댓값 $E(X_n)$ 을 구하시오. [9점]
 - (4) $\lim_{n\to\infty} E(X_n)$ 을 구하시오. [8점]



3. 출제 의도

- [1] 복소수의 켤레복소수의 뜻에 대한 이해력과 복소수의 사칙연산의 계산 능력을 평가한다. 그리고 이를 바탕으로 방정식과 부등식을 활용하는 응용문제의 해결능력을 평가한다.
- [2] 확률변수와 확률분포를 이해하고 주어진 문제의 기댓값을 구하는 과정을 설명할 수 있는 능력을 판단한다. 그리고 정적분과 급수의 합 사이의 관계를 이해하고 이를 활용하는 능력을 평가한다.

4. 출제 근거

1. 교육과정 근거

문항 및 제시문		관련 성취 기준		
제시문1	교육과정	[수학 I] - (2) 삼각함수 - ① 삼각함수		
세시군!	성취기준	[12수학 I 02-03] 사인법칙과 코사인법칙을 이해하고, 이를 활용할 수 있다.		
ᅰᅬᄆᄼ	교육과정	[확률과 통계] - (3) 통계 - ① 확률분포		
제시문2 성취기준		[12확통03-01] 확률변수와 확률분포의 뜻을 안다.		
테시므?	교육과정	[미적분] - (3) 적분법 - ② 정적분의 활용		
제시문3	성취기준	[12미적03-04] 정적분과 급수의 합 사이의 관계를 이해한다.		
문항	교육과정	[수학] - (1) 문자와 식 - ④ 복소수와 이차방정식		
[1]-(1)	성취기준	[10수학01-05] 복소수의 뜻과 성질을 이해하고 사칙연산을 할 수 있다.		
문항	교육과정	[수학] - (1) 문자와 식 - ④ 복소수와 이차방정식		
문왕 [1]-(2)	성취기준	[10수학01-05] 복소수의 뜻과 성질을 이해하고 사칙연산을 할 수 있다. [10수학01-08] 이차방정식의 근과 계수의 관계를 이해한다.		

문항 및	! 제시문	관련 성취 기준
문항	교육과정	[수학] - (1) 문자와 식 - ④ 복소수와 이차방정식 ⑥ 여러 가지 방정식과 부등식
[1](3)	성취기준	[10수학01-05] 복소수의 뜻과 성질을 이해하고 사칙연산을 할 수 있다. [10수학01-16] 이차부등식과 이차함수의 관계를 이해하고, 이차부등식과 연립 이차부등식을 풀 수 있다.
문항	교육과정	[확률과 통계] - (3) 통계 - ① 확률분포
[2](1)	성취기준	[12확통03-01] 확률변수와 확률분포의 뜻을 안다. [12확통03-02] 이산확률변수의 기댓값(평균)과 표준편차를 구할 수 있다.
문항	교육과정	[수학 I] - (2) 삼각함수 - ① 삼각함수 [확률과 통계] - (3) 통계 - ① 확률분포
2	성취기준	[12수학 I 02-03] 사인법칙과 코사인법칙을 이해하고, 이를 활용할 수 있다. [12확통03-02] 이산확률변수의 기댓값(평균)과 표준편차를 구할 수 있다.
문항	교육과정	[수학 I] - (2) 삼각함수 - ① 삼각함수 [수학 I] - (3) 수열 - ② 수열의 합 [확률과 통계] - (3) 통계 - ① 확률분포
[2](3)	성취기준	[12수학 I 02-03] 사인법칙과 코사인법칙을 이해하고, 이를 활용할 수 있다. [12수학 I 03-04] ∑의 뜻을 알고, 그 성질을 이해하고, 이를 활용할 수 있다. [12확통03-02] 이산확률변수의 기댓값(평균)과 표준편차를 구할 수 있다.
문항	교육과정	[미적분] - (1) 수열의 극한 - ① 수열의 극한 [미적분] - (3) 적분법 - ② 정적분의 활용
도영 [2](4)	성취기준	[12미적01-02] 수열의 극한에 대한 기본 성질을 이해하고, 이를 이용하여 극한값을 구할 수 있다. [12미적03-04] 정적분과 급수의 합 사이의 관계를 이해한다.

*: 교육과학기술부 고시 제 2015-74호 [별책 8] "수학과 교육과정"

2. 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
고등학교 교과서	수학	박교식 외	동아출판(주)	2020	41
	수학	이준열 외	㈜천재교육	2020	98, 142
	미적분	이준열 외	㈜천재교육	2020	17, 164
	확률과 통계	고성은 외	㈜좋은책신사고	2020	79, 84

5. 문항 해설

- [1] (1) 문자를 사용하여 복소수를 구체적으로 표현하고 켤레복소수에 대한 사칙연산을 수행함으로써 해결할 수 있다.
- (2) 인수분해를 수행하고 근과 계수의 관계를 활용하여 해결할 수 있다.
- (3) 근과 계수의 관계를 활용할 수 있도록 식을 변형하여 해결할 수 있다.
- [2] (1) 문제에 맞는 정육각형을 그려서 확률변수와 각각의 확률을 구하여 확률분포를 표로 나타내고 기댓 값을 구하는 문항이다.
- (2) 문제에 맞는 정팔각형을 그려서 코사인법칙을 사용하여 확률변수를 구하고, 각각의 확률을 구하여 기 댓값을 구하는 문항이다.
- (3) (1),(2)번을 통해 얻은 확률변수와 각각의 확률에 대한 규칙을 확인하고 기댓값을 수열의 합으로 표현하여 해결할 수 있다.
- (4) 제시문에 주어진 정적분과 급수의 합 사이의 관계를 활용할 수 있도록 (3)에서 얻은 수열의 합을 변형하고 적분을 계산하여 해결할 수 있다.

6. 채점 기준

하위 문항	채점 기준	배점
[1]/1)	$lpha,eta$ 와 이들의 켤레복소수 $\overline{lpha},\overline{eta}$ 를 문자를 사용하여 표현하였으면	2
1	$\overline{\alpha \beta} = \overline{\alpha} \overline{\beta}$ 를 정확히 기술하였으면	4
	$\omega^4 - \overline{\omega}^4 = 0$ 를 인수분해하여 낮은 차원의 방정식을 얻었으면	2
[1](2)	문제에서 주어진 방정식에 대한 근과 계수의 관계를 활용하였으면	2
	a의 조건을 확인하여 a 의 값을 정확히 구하였으면	3
[1](3)	a에 관한 부등식을 정확히 유도했으면	3
[1](5)	a의 조건을 적용하여 a 의 범위을 정확히 구하였으면	3
	확률변수를 구하였으면	2
[2](1)	확률을 구하여 확률분포를 표로 나타내었으면	3
	기댓값을 정확히 구하였으면	2
	확률변수를 구하였으면	2
2	각 확률을 구하였으면	2
	기댓값을 정확히 구하였으면	3
	확률변수를 구하였으면	3
[2](3)	각 확률을 구하였으면	3
	기댓값을 수열의 합으로 정확히 표현하였으면	3

하위 문항	채점 기준	배점
[2](4)	정적분으로 변형할 수 있도록 급수를 잘 변형하였으면	4
[2](4)	적분을 정확히 계산하였으면	4

7. 예시 답안

[1]

(1) α 와 β 를 $\alpha=a+bi$, $\beta=c+di$ (a,b,c,d는 임의의 실수) 라 하면 $\alpha\beta=(ac-bd)+(ad+bc)i$ 이므로

$$\overline{\alpha\beta} = (ac - bd) - (ad + bc)i \cdots 1$$

그리고
$$\overline{\alpha} = a - bi$$
 와 $\overline{\beta} = c - di$ 의 곱은

$$\overline{\alpha}\,\overline{\beta} = (a-bi)(c-di) = (ac-bd) - (ad+bc)i \cdots 2$$

따라서 ①, ②로부터 $\overline{\alpha\beta} = \overline{\alpha}\overline{\beta}$ 가 성립한다.

(2) 주어진 방정식이 허근을 가지므로.

$$D = (a+1)^2 - 4(2a+1) = a^2 - 6a - 3 < 0$$

$$3 - 2\sqrt{3} < a < 3 + 2\sqrt{3}$$
 3

한편, 주어진 식은 다음과 같이 인수분해된다.

$$0 = \omega^4 - \overline{\omega}^4 = (\omega^2 - \overline{\omega}^2)(\omega^2 + \overline{\omega}^2) = (\omega - \overline{\omega})(\omega + \overline{\omega})(\omega^2 + \overline{\omega}^2)$$

- (i) $\omega \overline{\omega} = 0$ 일 때 ω 는 실수가 되어 모순이다. 따라서 $\omega \overline{\omega} \neq 0$ 이다.
- (ii) $\omega+\overline{\omega}=0$ 일 때 $\omega+\overline{\omega}=a+1=0$ 에서 a=-1이다. 그런데 $-1<3-2\sqrt{3}$ 이므로 ③에 어긋난다. 따라서 $\omega+\overline{\omega}\neq 0$ 이다.

(iii)
$$\omega^2 + \overline{\omega}^2 = 0$$
일 때 $0 = (\omega + \overline{\omega})^2 - 2\omega\overline{\omega} = (a+1)^2 - 2(2a+1) = a^2 - 2a - 1$ 이다. 이로부터 $a = 1 \pm \sqrt{2}$ 이다.

그런데 $1-\sqrt{2}<3-2\sqrt{3}$ 이므로 ③에 어긋나고, 따라서 $\omega^4-\overline{\omega}^4=0$ 을 만족하는 $a=1+\sqrt{2}$ 이다.

(3)
$$\omega^2 + \overline{\omega}^2 - 2\omega\overline{\omega} = (\omega + \overline{\omega})^2 - 4\omega\overline{\omega} = (a+1)^2 - 4(2a+1) = a^2 - 6a - 3$$
 이므로 주어진 부등식은 다음과 같다.

$$a^{2}-6a-3>-8$$
 \Rightarrow $a^{2}-6a+5=(a-1)(a-5)>0$

$$\Rightarrow$$
 $a < 1$ 또는 $a > 5$

그러므로 3에 의해 a의 범위는 다음과 같다.

$$3-2\sqrt{3} < a < 1$$
, $5 < a < 3+2\sqrt{3}$

 $a_3 = 2$

[2

(1) 두 꼭지점 사이의 거리가 작은 것부터 $a_1,\,a_2,\,a_3$ 로 나타내면 확률변수 X_3 의 값은 다음과 같다.(오른쪽 그림 참조)

$$(a_1)^2 = 2\left(1 - \cos\frac{\pi}{3}\right) = 1, \qquad (a_2)^2 = 2\left(1 - \cos\frac{2\pi}{3}\right) = 3, \qquad (a_3)^2 = 2^2 = 4$$

6개의 점으로부터 2개를 선택하는 방법의 가짓수는 $_6\mathrm{C}_2=15\,\mathrm{OIC}.$

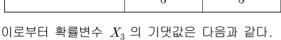
그리고 a_1, a_2 가 나타나는 경우의 수가 각각 6이고,

 a_3 이 나타나는 경우의 수가 3이므로

$$P(X_3=(a_1)^2)=P(X_3=(a_2)^2)=\frac{6}{15}=\frac{2}{5}\,,\qquad P(X_3=(a_3)^2)=\frac{3}{15}=\frac{1}{5}$$

따라서 확률변수 X_3 의 확률분포를 표로 나타내면 다음과 같다.

X_3	1	3	4	합계
$P(X_3 = (a_i)^2)$	$\frac{2}{5}$	$\frac{2}{5}$	$\frac{1}{5}$	1



$$E(X_3) = 1 \cdot \frac{2}{5} + 3 \cdot \frac{2}{5} + 4 \cdot \frac{1}{5} = \frac{12}{5}$$

(2) 오른쪽 그림과 같이 두 꼭짓점 사이의 거리가 작은 것부터 $a_1,\,a_2,\,a_3,\,a_4$ 로 나타

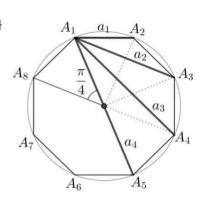
내자. 한 변이 이루는 중심각이 $\frac{\pi}{4}$ 이므로 코사인법칙으로부터

$$(a_1)^2 = 1 + 1 - 2\cos\frac{\pi}{4} = 2\left(1 - \frac{\sqrt{2}}{2}\right) = 2 - \sqrt{2},$$

$$(a_2)^2 = 1 + 1 - 2\cos\frac{2\pi}{4} = 2(1 - 0) = 2,$$

$$(a_3)^2 = 1 + 1 - 2\cos\frac{3\pi}{4} = 2\left(1 + \frac{\sqrt{2}}{2}\right) = 2 + \sqrt{2},$$

$$(a_4)^2 = 1 + 1 - 2\cos\frac{4\pi}{4} = 2(1+1) = 4$$



8개의 점으로부터 2개를 선택하는 방법의 가짓수는 $_8\mathrm{C}_2=28$ 이다. 그리고 $a_1,\,a_2,\,a_3$ 은 각각 8 번 얻을 수 있고, a_4 는 4 번 얻을 수 있으므로 확률변수 X_4 의 확률분포를 표로 나타내면 다음과 같다.

X_4	$2-\sqrt{2}$	2	$2+\sqrt{2}$	4	합계
$P(X_4 = (a_i)^2)$	$\frac{2}{7}$	$\frac{2}{7}$	$\frac{2}{7}$	$\frac{1}{7}$	1

이로부터 $E(X_4)$ 은 다음과 같다.

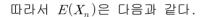
$$E(X_4) = \left[\left(2 - \sqrt{2} \, \right) + 2 + \left(2 + \sqrt{2} \, \right) \right) \cdot \frac{2}{7} + 4 \, \cdot \, \frac{1}{7} = \frac{16}{7}$$

(3) 오른쪽 그림과 같이 두 꼭짓점 사이의 거리가 작은 것부터 $a_1,\,a_2,\,\cdots,\,a_n$ 으로 나타내자. 한 변이 이루는 중심각이 $\frac{\pi}{n}$ 이므로 코사인법칙으로부터 다음을 얻는다.

$$(a_k)^2 = 1 + 1 - 2\cos\frac{k\pi}{n} = 2\bigg(1 - \cos\frac{k\pi}{n}\bigg) \qquad (k = 1, 2, \cdots, n)$$

2n 개의 점으로부터 2개를 선택하는 방법의 가짓수는 $_{2n}\mathrm{C}_2=n(2n-1)$ 이다. 그리고, $a_1,\,a_2,\,\cdots,\,a_{n-1}$ 은 각각 2n 번 얻을 수 있고, a_n 은 n번 얻을 수 있으므로 다음이 성립한다.

$$P(X_n = (a_k)^2) = \begin{cases} \frac{2}{2n-1} & (k \neq n) \\ \frac{1}{2n-1} & (k = n) \end{cases}$$



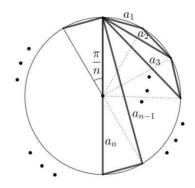
$$\begin{split} E(X_n) &= \sum_{k=1}^{n-1} 2 \Big(1 - \cos \frac{k\pi}{n} \Big) \cdot \frac{2}{2n-1} + 2 \Big(1 - \cos \frac{n\pi}{n} \Big) \cdot \frac{1}{2n-1} \\ &= \frac{4}{2n-1} \sum_{k=1}^{n-1} \Big(1 - \cos \frac{k\pi}{n} \Big) + \frac{4}{2n-1} \end{split}$$



$$E(X_n) = \frac{4}{2n-1} \sum_{k=1}^{n} \left(1 - \cos \frac{k\pi}{n} \right) - \frac{4}{2n-1}$$
$$= \frac{4n}{\pi (2n-1)} \sum_{k=1}^{n} \left(1 - \cos \frac{k\pi}{n} \right) \cdot \frac{\pi}{n} - \frac{4}{2n-1}$$

따라서 다음을 얻는다.

$$\begin{split} \lim_{n \to \infty} E(X_n) &= \lim_{n \to \infty} \left\{ \frac{4n}{\pi (2n-1)} \sum_{k=1}^n \left(1 - \cos \frac{k\pi}{n} \right) \cdot \frac{\pi}{n} - \frac{4}{2n-1} \right\} \\ &= \left\{ \lim_{n \to \infty} \frac{4n}{\pi (2n-1)} \right\} \left\{ \lim_{n \to \infty} \sum_{k=1}^n \left(1 - \cos \frac{k\pi}{n} \right) \cdot \frac{\pi}{n} \right\} - \lim_{n \to \infty} \frac{4}{2n-1} \\ &= \frac{2}{\pi} \int_0^{\pi} (1 - \cos x) \, dx \\ &= \frac{2}{\pi} [x - \sin x]_0^{\pi} = 2 \end{split}$$



[문항카드 6]

1. 일반정보

유형	■ 논술고사 □ 면접 및 구술고사		
전형명	분 논술우수자전형		
해당 대학의 계열(과목) / 문항번호	자연계열 / 3교시 2번		
출제 범위	수학과 교육과정 과목명	수학, 수학 I, 수학 II, 미적분	
출세 급기	핵심개념 및 용어 방정식과 부등식, 로그함수, 미분, 적분		
예상 소요 시간	60분 / 전체 120분		

2. 문항 및 제시문

[문제 2] (50점) 다음 제시문을 읽고 문항별로 풀이와 함께 답하시오.

1. 이차방정식의 근의 판별

계수가 실수인 이차방정식 $ax^2+bx+c=0$ $(a\neq 0)$ 에서 $D=b^2-4ac$ 라고 할 때, D>0이면 서로 다른 두 실근을 갖고, 서로 다른 두 실근을 가지면 D>0이다. D=0이면 중근을 갖고, 중근을 가지면 D=0이다. D<0이면 서로 다른 두 허근을 갖고, 서로 다른 두 허근을 가지면 D<0이다.

2. $a>0, \ a \neq 1, \ x_1>0, \ x_2>0$ 이고 a>1일 때, $\log_a x_1 < \log_a x_2 \Leftrightarrow x_1 < x_2$

0 < a < 1일 때, $\log_a x_1 < \log_a x_2 \Leftrightarrow x_1 > x_2$

3. 함수의 극한의 대소 관계

 $\lim_{x \to a} f(x) = \alpha, \ \lim_{x \to a} g(x) = \beta \left(\alpha, \beta \text{는 실수}\right)$ 일 때, a가 아니면서 a에 가까운 모든 실수 x에 대하여 $f(x) \leq g(x)$ 이면 $\alpha \leq \beta$ 이다.

 $f(x) \le h(x) \le g(x)$ 이고 $\alpha = \beta$ 이면 $\lim_{x \to a} h(x) = \alpha$ 이다.

4. 함수의 극대와 극소의 판정

함수 f(x)가 미분가능하고 f'(a)=0일 때, x=a의 좌우에서 f'(x)의 부호가 양에서 음으로 바뀌면 f(x)는 x=a에서 극대이고 극댓값 f(a)를 갖는다. 음에서 양으로 바뀌면 f(x)는 x=a에서 극소이고 극솟값 f(a)를 갖는다.

[1] 실수 a,b와 0이 아닌 실수 k에 대하여 x에 대한 두 방정식이 다음과 같이 주어질 때, 물음에 답하시오.

$$(k-b)x^2 + 2akx + 2 = 0$$
 ····· ①

$$2x^2 + 2akx + k - b = 0 \quad \cdots \quad \boxed{2}$$

- (1) 방정식 (1)이 1개의 실근을 가지도록 하는 a의 조건과 실수 k의 합을 구하시오. [7점]
- (2) 두 방정식 ①과 ②의 해집합이 같을 조건을 구하시오. [8점]
- [2] 다음 부등식을 만족하는 두 자연수 a,b의 순서쌍 (a,b)의 개수를 구하시오. [10점] $|\log_2 a \log_2 10| + \log_2 b \leq 1$
- [3] 실수 전체의 집합을 정의역으로 하는 미분가능한 함수 f 가 모든 실수 x,y 에 대하여 다음 조건을 만족시킬 때, 물음에 답하시오.

$$f(x+y) \ge f(x) + f(y) - (xy-1)^2$$
, $f(0) \ge 1$, $f'(0) = 1$

- (1) f(0)을 구하시오. [3점]
- (2) 함수 f(x)와 도함수 f'(x)를 구하시오. [12점]
- (3) 함수 $g(x) = xe^{-x}$ 이 x = a 에서 극댓값을 가질 때, 두 곡선 y = f(x), y = g(x)와 두 직선 x = 0, x = a로 둘러싸인 부분의 넓이를 구하시오. [10점]

3. 출제 의도

- [1] (1) 일차 혹은 이차방정식을 구별하는 논리적 능력과 판별식을 이용한 이차방정식의 근의 판별 능력을 평가한다.
 - (2) 방정식의 해집합이 같도록 가능한 논리적 상황을 구분하는 분석력과 계산력을 평가한다.
- [2] 로그함수를 활용하여 문제를 해결하는 능력을 평가한다.
- [3] (1) 부등식에 대한 문제를 해결할 수 있는 능력을 평가한다.
 - (2) 미분계수에 대한 이해력과 계산능력을 평가한다.
 - (3) 함수의 극대와 극소를 판정하는 능력과 정적분을 이용하여 도형의 넓이를 계산하는 능력을 평가한다.

4. 출제 근거

1. 교육과정 근거

문항 및 제시문		관련 성취기준
	교육과정	[수학] - (1) 문자와 식 - ④ 복소수와 이차방정식
제시문1	성취기준	[10수학01-07] 이차방정식에서 판별식의 의미를 이해하고 이를 설명할 수 있다.
TULLED	교육과정	[수학 I]-(1) 지수함수와 로그함수-② 지수함수와 로그함수
제시문2	성취기준	[12수학 I 01-08] 지수함수와 로그함수를 활용하여 문제를 해결할 수 있다.
	교육과정	[수학표]-(1) 함수의 극한과 연속-11 함수의 극한
제시문3	성취기준	[12수학표01-02] 함수의 극한에 대한 성질을 이해하고, 함수의 극한값을 구할 수 있다.
ᅰᅬᄆᄼ	교육과정	[수학II]-(2) 미분-[3] 도함수의 활용
제시문4	성취기준	[12수학표02-08] 함수의 증가와 감소, 극대와 극소를 판정하고 설명할 수 있다.
문항	교육과정	[수학]-(1) 문자와 식-[4] 복소수와 이차방정식
표명 1	성취기준	[10수학01-06] 이차방정식의 실근과 허근의 뜻을 안다. [10수학01-08] 이차방정식의 근과 계수의 관계를 이해한다.
문항	교육과정	[수학]-(1) 문자와 식-④ 복소수와 이차방정식
[1](2)	성취기준	[10수학01-07] 이차방정식에서 판별식의 의미를 이해하고 이를 설명할 수 있다.
문항	교육과정	[수학 I]-(1) 지수함수와 로그함수-2 지수함수와 로그함수
[2]	성취기준	[12수학 I 01-08] 지수함수와 로그함수를 활용하여 문제를 해결할 수 있다.
문항	교육과정	[미적분]-(2) 미분법-[3] 도함수의 활용
[3](1)	성취기준	[12미적02-13] 방정식과 부등식에 대한 문제를 해결할 수 있다.
문항	교육과정	[수학Ⅱ]-(1) 함수의 극한과 연속-① 함수의 극한 [수학Ⅱ]-(2) 미분-① 미분계수
문왕 [3](2)	성취기준	[12수학표01-02] 함수의 극한에 대한 성질을 이해하고, 함수의 극한값을 구할수 있다. [12수학표02-01] 미분계수의 뜻을 알고, 그 값을 구할 수 있다.
문항 3	교육과정	[수학표]-(2) 미분-[3] 도함수의 활용 [미적분]-(3) 적분법-[1] 여러 가지 적분법 [미적분]-(3) 적분법-[2] 정적분의 활용
	성취기준	[12수학II02-08] 함수의 증가와 감소, 극대와 극소를 판정하고 설명할 수 있다. [12미적03-02] 부분적분법을 이해하고, 이를 활용할 수 있다. [12미적03-05] 곡선으로 둘러싸인 도형의 넓이를 구할 수 있다.

^{*:} 교육과학기술부 고시 제2015-74호 [별책 8] "수학과 교육과정"

2. 자료 출처

참고자료	도서명	저자	발행처	발행년도	쪽수
	수학	홍석복 외	지학사	2018	58, 60
- - 1 -	수학 I	홍석복 외	지학사	2018	56
고등학교 : 교과서	수학 ॥	홍석복 외	지학사	2018	25
,	수학 ॥	김원경 외	비상교육	2018	16, 84
	미적분	김원경 외	비상교육	2018	132, 149
기타					

5. 문항 해설

방정식과 부등식, 로그함수, 미분, 적분 등의 개념은 자연과학을 포함한 모든 분야에서 유용하게 활용되고 있는 가장 기본적인 수학적 개념이다. 이러한 개념들을 이해하면 다음과 같은 간단한 과정을 통해 해결할 수 있는 문항이다.

- [1] (1) 일차방정식과 이차방정식의 차이를 구별하고 판별식을 이용하여 해결할 수 있는 문항이다.
- (2) 일차방정식과 이차방정식 혹은 두 이차방정식에 대한 해집합을 같게 하는 논리적 상황을 분석해서 해결할 수 있는 문항이다.
- [2] 로그함수를 활용하여 부등식을 만족하는 자연수들의 순서쌍의 개수를 차례로 문항이다.
- [3] (1) 주어진 부등식과 조건을 이용하여 x = 0에서 함숫값을 구하는 문항이다.
- (2) 함수의 극한을 이용하여 주어진 부등식을 만족시키는 함수의 도함수를 구하고 부정적분과 (1)에서 구한 결과를 이용하여 함수를 구하는 문항이다.
- (3) 함수의 극대와 극소를 판정과 부분적분법을 이용한 정적분으로 문제를 해결할 수 있는 문항이다.

6. 채점 기준

하위문항	채점 기준	배점
1	(i) $k=b$ 인 경우, $a=0$ 와 $a\neq 0$ 로 나누어 설명하면	2
	(ii) $k \neq b$ 인 경우, 판별식을 사용하여 $a \neq 0$ 임을 보이고 k 의 합은 $\frac{2}{a^2}$ 임을 보이면	4
	(i)과 (ii)로부터 $a \neq 0$ 이고, k 의 합이 $b + \frac{2}{a^2}$ 임을 표현하면	1
	(i) $k = b$ 이고 $a = 0$ 일 때, 해집합이 같지 않음을 설명하면	1
[1](2)	(ii) $k=b$ 이고 $a \neq 0$ 일 때, 해집합이 같지 않음을 설명하면	1
	(iii) $k \neq b$ 이고 $a=0$ 일 때, 해집합이 같을 조건은 $k-b=\pm 2$ 이다.	2
	(iv) $k \neq b$ 이고 $a \neq 0$ 일 때, 해집합이 같을 조건 $k-b=2$ 이다.	3
	해집합이 같을 조건 $k-b=-2$ (단, $a=0$) 또는 $k-b=2$ 을 기술하면	1
	a>10 일 때 부등식을 만족하는 순서쌍을 구했으면	3
121	0 < a < 10 일 때 순서쌍을 구했으면	3
[2]	a=10일 때 순서쌍을 구했으면	3
	순서쌍의 개수 17을 구했으면	1
[3](1)	$f(0) \leq 1$ 임을 보였으면	1
	문제의 조건으로부터 $f(0)=1$ 을 구했으면	2

[3](2)	$\lim_{y \to 0} \frac{f(y) - 1}{y} = 1$ 을 구했으면	3
	$\lim_{y \to 0+} \frac{f(x+y) - f(x)}{y} \ge 2x + 1$ 임을 보였으면	2
	$\lim_{y \to 0^-} \frac{f(x+y) - f(x)}{y} \le 2x + 1$ 임을 보였으면	2
	f'(x) = 2x + 1을 구했으면	2
	$f(x) = x^2 + x + 1$ 을 구했으면	3
3	a=1을 구했으면	4
	도형의 넓이를 정적분 $\int_0^1 (x^2 + x + 1 - xe^{-x}) dx$ 로 표현했으면	2
	부분적분법을 이용하여 $\int_0^1 xe^{-x} dx = \left[-(x+1)e^{-x}\right]_0^1$ 을 유도했으면	2
	도형의 넓이 $\frac{5}{6}+\frac{2}{e}$ 를 구했으면	2

7. 예시 답안

[1]

(1) (i) k = b인 경우, 방정식 ①은 2akx + 2 = 0이 된다. a = 0이면 2 = 0이 되므로 근이 존재하지 않는다. $a \neq 0$ 이면 하나의 실근을 가진다.

(ii) $k \neq b$ 인 경우, 1개의 실근은 중근을 의미하므로 $\frac{D}{4} = a^2 k^2 - 2(k-b) = 0$ 이다.

a=0이면 $\frac{D}{4}\neq 0$ 이 되기 때문에 $a\neq 0$ 이다.

 $\frac{D}{4}$ 는 k에 대한 이차식이므로 이차방정식의 근과 계수의 관계에서 k의 합은 $\frac{2}{a^2}$ 이다.

- (i), (ii)에 의하여 방정식 ①이 1개의 실근을 가지도록 하는 a의 조건은 $a\neq 0$ 이고, k의 합은 $b+\frac{2}{a^2}$ 이다.
- (2) (i) k = b이고 a = 0일 때

방정식 ①은 2=0이 되어 근이 존재하지 않고 방정식 ②는 중근 x=0을 가지므로 두 해집합은 같지 않다.

(ii) k = b이고 $a \neq 0$ 일 때

방정식 ①의 근은 $x=-\frac{1}{ak}$ 이고 방정식 ②의 근은 $x=0,\,-ak$ 이므로 두 해집합은 같지 않다.

(iii) $k \neq b$ 이고 a = 0일 때

방정식 ①로부터 $x^2=-rac{2}{k-b}$ 이고 방정식 ②로부터 $x^2=-rac{k-b}{2}$ 이다.

따라서 해집합이 같을 조건은 $k-b=\pm 2$ 이다.

(iv) $k \neq b$ 이고 $a \neq 0$ 일 때

해집합이 같은 이차방정식은 $p(x-\alpha)(x-\beta)=0$ 의 형태를 가진다.

방정식 ①과 ②는 일차항이 같으므로 나머지 계수도 같아야 한다.

따라서 k-b=2 이다.

(i), (ii),(iii),(iv)로부터 해집합이 같을 조건은 k-b=-2(단, a=0) 또는 k-b=2이다.

[2]

$$|\log_2 a - \log_2 10| + \log_2 b \le 1 \implies \left|\log_2 \frac{a}{10}\right| + \log_2 b \le 1$$

(i) $\log_2 \frac{a}{10} > 0$ 인 경우 (a > 10인 경우)

$$\log_2 \frac{a}{10} + \log_2 b \le \log_2 2 \Rightarrow \log_2 \frac{ab}{10} \le \log_2 2 \Rightarrow \frac{ab}{10} \le 2$$

그러므로 $ab \le 20$ ①

a, b가 자연수이고 a > 10이므로

- ① 식을 만족하는 경우는 (11,1), (12,1), \cdots , (19,1), (20,1)로 모두 10 가지
- (ii) $\log_2 \frac{a}{10} < 0$ 인 경우 (0 < a < 10인 경우)

$$-\log_2\frac{a}{10} + \log_2 b \le 1 \Rightarrow \log_2\frac{10}{a} + \log_2 b \le 1 \Rightarrow \log_2\frac{10b}{a} \le \log_2 2 \Rightarrow \frac{10b}{a} \le 2 \Rightarrow 10b \le 2a$$

그러므로 $5b \leq a$ …… ②

a, b가 자연수이고 0 < a < 10이므로

- ② 식을 만족하는 경우는 (9,1), (8,1), (7,1), (6,1), (5,1)로 5 가지
- (iii) $\log_2 \frac{a}{10} = 0$ 인 경우 (a = 10인 경우)

$$\log_2 b \le 1 \implies \log_2 b \le \log_2 2$$

그러므로 $b \leq 2$ ····· ③

a, b가 자연수이고 a = 10이므로

- ③ 식을 만족하는 경우는 (10,1), (10,2)로 2가지
- (i), (ii), (iii)에 의하여 순서쌍 (a,b)의 개수는 모두 17가지이다.

[3]

(1)
$$f(x+y) - f(x) \ge f(y) - (xy-1)^2$$

 $x = 0, y = 0$ $\mathbb{H} f(0) \le 1$

문제의 조건에서 $f(0) \ge 1$ 이므로 f(0) = 1

(2) 주어진 부등식으로부터

$$y>0$$
일 때
$$\frac{f\left(x+y\right)-f\left(x\right)}{y}\,\geq\,\frac{f\left(y\right)-1}{y}+2x-x^{2}y\cdot\cdot\cdot\cdot\cdot$$
 ①

$$y < 0$$
일 때
$$\frac{f(x+y)-f(x)}{y} \le \frac{f(y)-1}{y} + 2x - x^2y \cdots$$
 ②

미분계수의 정의와 문제의 조건으로부터

$$\lim_{y \to 0} \frac{f(y) - 1}{y} = \lim_{y \to 0} \frac{f(y) - f(0)}{y} = f'(0) = 1$$

함수의 극한의 대소 관계(제시문 3)에 의하여

그러므로
$$f'(x) = \lim_{y \to 0} \frac{f(x+y) - f(x)}{y} = 2x + 1$$

따라서 $f(x) = x^2 + x + C$ (C는 상수)이고, 조건에서 f(0) = 1 이므로 $f(x) = x^2 + x + 1$ 이다.

(3) $q(x) = xe^{-x}$ 는 미분가능한 함수이다.

$$g'(x) = e^{-x}(1-x)$$
 이므로 $g'(x) = 0$ 에서 $x = 1$ 이다.

g'(x)의 부호를 조사하여 g(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	•••	1	•••
g'(x)	+	0	
$g\left(x\right)$	/	극대	>

제시문 4에 의하여 함수 q(x)는 x=1에서 극댓값을 가지므로 a=1이다.

두 곡선 y = f(x), y = q(x)와 직선 x = 0, x = a로 둘러싸인 부분의 넓이를 S라 하면 다음과 같다.

$$S = \int_0^1 |f(x) - g(x)| dx = \int_0^1 (x^2 + x + 1 - xe^{-x}) dx$$

부분적분법으로 $q(x) = xe^{-x}$ 의 부정적분을 구하면

따라서 구하는 넓이는 다음과 같다.

$$S = \int_0^1 (x^2 + x + 1 - xe^{-x}) dx = \left[\frac{1}{3} x^3 + \frac{1}{2} x^2 + x + xe^{-x} + e^{-x} \right]_0^1 = \frac{5}{6} + \frac{2}{e}$$